Supporting Information

Rec. Nat. Prod. 14:2 (2020) 116-128

Efficacy of Gynostemma pentaphyllum Extract in

Anti-obesity Therapy

Yoon Hee Kim¹, So Mi Kim², Jae Kyoung Lee¹, Sung Kwan Jo¹, Hyung Joong Kim¹, Kyu Min Cha¹, Cho Young Lim¹, Joo Myung Moon¹, Tae Young Kim¹, Eun Ji Kim²

¹BTC Corporation, Ansan, Korea

²Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, Chuncheon, Korea

Table of Contents	Page
S1: Experimental Details	
S1.1: LC/MS Analysis Conditions	1
S1.2: LC/MS Data Analysis	1
S1.3: Method Validation	1
Figure S1: HPLC spectrum and full scan total LC-MS spectra at 10eV (ESI+) revealed	2
two gypenosides and one ginsenoside peak in an extract from GPE	
Figure S2: Identification of compound 1(GL), 2(GLI), and 3(Rg3) from GPE	3
Figure S3: Linearity of GL	4
Figure S4: Linearity of GLI	4
Figure S5: Linearity of Rg 3	5
Table S1: Precision-repeatability of GL, GLI, and Rg3	6
Table S2: Accuracy of GL, GLI, and Rg3	6
Table S3: ¹³ C NMR spectroscopic data for isolated GL, GLI, and Rg3 in pyr-d5	7
Figure S6: ¹ H NMR (400 MHz) spectrum of isolated GL	8
Figure S7: ¹³ C NMR (100 MHz) spectrum of isolated GL	9
Figure S8: ¹ H NMR (400 MHz) spectrum of isolated GLI	10
Figure S9: ¹³ C NMR (100 MHz) spectrum of isolated GLI	11
Figure S10: ¹ H NMR (500 MHz) spectrum of isolated Rg3	12
Figure S11: ¹³ C NMR (125 MHz) spectrum of isolated Rg3	13

S1: Experimental Details

S1.1: LC/MS Analysis Conditions

GPE and purified compounds were dissolved in methanol and analyzed by a Thermo U3000-LTQ XL ion trap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an electrospray ionization (ESI) mass source. Chromatographic separation of the compounds was achieved using a HSS T3 C18 column (2.1×150 mm; 2.5μ m particle size; Waters, Milford, MA, USA) at a flow rate of 0.3 mL/min. Mobile phases A and B were water and acetonitrile, respectively, both containing 0.1% formic acid. Gradient elution was conducted as follows: 5–100% B for 0–15 min with a linear gradient, followed by 5 min of 100% B. The MS/MS system was operated in ESI mode. The typical operating parameters were as follows: spray needle voltage, +5 kV; ion transfer capillary temperature, 275° C; nitrogen sheath gas, 35; and auxiliary gas, 5 (arbitrary units). The ion trap contained helium damping gas, which was introduced in accordance with the manufacturer's recommendations. Mass spectra were acquired in an *m*/*z* range of 50–1000, with 3 microscans and a maximum ion injection time of 200 ms. The data-dependent mass spectrometry experiments were controlled using the menu-driven software provide with the Xcalibur system (version 2.2 SP1.48; Thermo Fisher Scientific).

S1.2: LC/MS Data Analysis

Raw data files were processed using Mass Frontier 7.0 software (Thermo Fisher Scientific). The program modules used were Chromatogram Processor and Database Manager. Mass Frontier software was then employed to interpret MS/MS spectra by assigning structures to the fragment ions automatically.

S1.3: Method Validation

The Method was validated by the linearity, Precision and Accuracy of the results. Correlation coefficient was 0.999 for Gypenoside L, Gypenoside LI and Ginsenoside Rg3 which prove that the method is linear (Figure S3, S4, and S5). Precision was measured by repeatability. Repeatability was demonstrated by repeated measurements of three concentrations the intended range of samples. The method is precise as % RSD of peak area was 0.743-1.433 in case of Gypenoside L, 0.730-1.230 in case of Gypenoside LI and 1.500-1.804 in case of Ginsenoside Rg3 (Table S2). Accuracy was assessed by analyzing a sample with known concentration and comparing the measured value with the true value. In case of Gypenoside LI % recovery was 100.04% -103.12% (average 101.73%, % RSD 1.532), in case of Gypenoside LI % recovery was 100.05% -101.29% (average 100.85%, % RSD 0.686) and in case of Ginsenoside Rg3 % recovery was 101.39% -102.69% (average 101.85%, % RSD 0.709) (Table S3).

Figure S1: HPLC spectrum and full scan total LC-MS spectra at 10eV (ESI+) revealed two gypenosides and one ginsenoside peak in an extract from GPE. (A) HPLC spectrum of GPE. (B) LC-MS spectra of Peaks 1, 2, and 3

Figure S2: Identification of compound 1(GL), 2(GLI), and 3(Rg3) from GPE. (a)–(b) HPLC spectra of GL standard and Isolated GL, (c)–(d) HPLC spectra of GLI standard and Isolated GLI, (e)–(f) HPLC spectra of Rg3 standard and Isolated Rg3

Figure S3: Linearity of GL

Figure S4: Linearity of GLI

Figure S5: Linearity of Rg3

	Mean of 5 samples			
Compound	Concentration (mg/ml)	Peak area	Conc. (mg/g)	RSD (%)
	8.99	552.530	18.025	0.743
GL	10.07	621.510	18.040	1.433
	11.05	683.269	18.047	0.575
GLI	9.03	391.147	14.019	1.230
	10.01	434.550	14.028	1.167
	11.05	480.293	14.038	0.730
Rg3	9.01	39.698	1.408	1.804
	10.12	44.341	1.402	1.500
	11.09	48.932	1.409	1.680

Table S1: Precision-repeatability of GL, GLI, and Rg3

Table S2: Accuracy of GL, GLI, and Rg3

	Mean of 3 samples				
Compound	Concentration. (mg/mL)	Standard added (µg/mL)	Recovery (%)	Mean recovery (%)	RSD (%)
	7.38		103.12		
GL	10.32	94.24	100.04	101.73	1.532
	12.42		102.04		
GLI	7.56		101.21	100.85	0.686
	10.04	101.76	101.29		
	12.53		100.05		
Rg3	7.60		101.49		
	10.13	19.68	101.39	101.85	0.709
	12.61		102.69		

	G	GL ^a GLI		GL ^a GLI ^a Rg3 ^b		
Position	δ^{R}	δ_{C}	δ^{R}	δ_{C}	δ^{R}	δ _C
C1	47.8	47.79	47.9	47.80	38.4	39.15
C2	68.0	66.70	68.1	66.70	25.8	27.11
C3	96.5	95.61	96.6	95.62	88.0	88.92
C4	41.8	41.01	41.8	41.03	38.2	36.93
C5	57.1	56.22	57.2	56.23	55.4	56.38
C6	19.3	18.51	19.3	18.54	17.7	18.45
C/	35.7	35.07	35.8	35.10	34.3	35.18
C8	40.9	39.98	40.9	40.01	36.2	35.9
C9	51.2	50.39	51.2	50.69	49.3	50.40
C10 C11	38.8	37.83	28.8 22.2	37.80	38.0 21.0	39.72
C11	52.2 71.0	52.27 71.20	52.2 71.8	52.41 71.31	51.0 60.5	52.07 71.03
C12	/1.9	/1.29	/1.8	/1.31	09.3 17.8	/1.03
C13	52 5	51 73	52 6	51.80	50 1	54.83
C15	32.0	31.75	32.0	34 41	30.1	31 35
C16	27.3	27.07	27.2	26.68	25.5	26.86
C17	55.0	54.82	50.8	50.40	49.4	51.73
C18	16.2	15.81	16.2	15.83	16.4	17.02
C19	17.9	17.70	17.9	17.73	15.8	16.63
C20	74.3	72.90	74.5	72.92	71.4	72.96
C21	26.6	26.87	22.4	22.65	22.0	25.83
C22	36.3	35.92	43.3	43.27	41.9	40.00
C23	23.3	23.02	22.8	22.82	21.4	23.02
C24	126.2	126.37	126.0	126.11	124.9	126.33
C25	131.9	130.77	131.9	130.78	129.5	130.77
C26	25.9	25.84	25.9	25.86	25.4	26.75
C27	17.8	17.65	17.8	17.65	17.5	17.70
C28	28.7	28.32	28.7	28.32	27.4	28.14
C29	17.8	1/.54	l /./	17.57	15.7	16.38
C30	17.2	16.98	17.5	17.29	15.4	15.84
C1′	104.7	105.72	104.8	105.73	103.5	105.14
C2'	80.7	82.46	80.7	82.47	81.0	83.51
C3′	78.1	78.43	78.2	78.44	76.4	78.29
C4′	72.0	71.91	72.0	71.91	69.7	71.66
C5'	77.9	78.20	77.9	78.2	76.2	78.14
C6′	63.2	62.95	63.2	62.95	60.9	62.86
C1"	104.3	104.53	104.4	104.54	103.8	106.12
C2"	76.1	76.75	76.1	76.77	75.0	77.20
C3"	78.5	78.58	78.6	78.58	75.7	77.99
C4"	71.1	70.93	71.2	70.83	69.6	71.64
C5″	77.9	78.34	78.0	78.35	76.7	78.37
C6"	62.3	62.37	62.4	62.39	60.7	62.71

Table S3: ¹³C NMR spectroscopic data for isolated GL, GLI, and Rg3 in pyr-d5

^aRecorded at 100 MHz for ¹³C NMR data in pyridine(pyr)-*d*5. ^bRecorded at 125 MHz for ¹³C NMR data in pyridine(pyr)-*d*5. ^RReference chemical shift.

Figure S6: ¹H NMR (400 MHz) spectrum of isolated GL

Figure S7: ¹³C NMR (100 MHz) spectrum of isolated GL

Figure S8: ¹H NMR (400 MHz) spectrum of isolated GLI

Figure S9: ¹³C NMR (100 MHz) spectrum of isolated GLI

Figure S10: ¹H NMR (500 MHz) spectrum of isolated Rg3

Figure S11: ¹³C NMR (125 MHz) spectrum of isolated Rg3