Supporting Information

Rec. Nat. Prod. 14:3 (2020) 195-200

Diterpenoids and Sesquiterpenoids from *Syzygium fluviatile* Dingli Zhang¹, Yikao Hu¹, Li Wang², Shengxiong Huang²,

Yan Zhao¹, Mengjia Li¹, Feng Li¹ and Yong Zhao^{1*}

¹ College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China

² State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Table of Contents					
Figure S1: ¹ H NMR spectrum of compound 1 recorded in CDCl ₃ at 600 MHz	2				
Figure S2: ¹³ C NMR spectrum of compound 1 recorded in CDCl ₃ at 150 MHz	2				
Figure S3: HSQC spectrum of compound 1 recorded in CDCl ₃	3				
Figure S4: HMBC spectrum of compound 1 recorded in CDCl ₃	3				
Figure S5: ¹ H- ¹ H COSY spectrum of compound 1 recorded in CDCl ₃	4				
Figure S6: HR-ESI-MS spectrum of compound 1	4				
Figure S7: Scifinder new compound report	5				
Table S1: ¹³ C NMR data for compounds 2–9	6				
Table S2: ¹ H NMR data for compounds 2–9	7				

* Corresponding authors:zhaooy@126.com (Y. Zhao); Phone: 86-871-65941087 Fax: 86-871-65941088

Figure S2: ¹³C NMR spectrum of compound 1 recorded in CDCl₃ at 150 MHz

Figure S4. HMBC spectrum of compound 1 recorded in CDCl₃

Figure S5. ¹H-¹H COSY spectrum of compound 1 recorded in CDCl₃

Figure S6: HR-EI-MS spectrum of compound 1

A CASSOLUTION		Welcome Yua
Explore - Sa	ed Searches - SciPlanner	
No candidates availab	e <u>Return</u>	
Chemical Structure exact		
SUBSTANCES		
	Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure S7. Scifinder new compound report

	2 ^a	3 ^a	4 ^a	5 ^b	6 ^b	7 °	8 ^b	9 ^b
NO.	$\delta_{ m c}$	$\delta_{ m c}$	$\delta_{ m c}$	$\delta_{ m c}$				
1	36.7	62.0	89.2	56.1	57.1	30.1	45.8	50.1
2	39.4	117.9	30.3	24.2	26.1	27.6	124.8	22.7
3	24.8	143.5	38.5	41.3	34.6	24.9	134.5	31.0
4	37.4	40.1	83.1	80.5	36.4	39.0	31.3	135.0
5	28.0	25.3	76.5	47.3	39.7	153.6	21.8	122.2
6	32.8	36.9	27.7	29.7	28.4	53.6	26.6	39.9
7	24.5	33.0	35.6	26.9	26.8	26.2	44.3	46.8
8	37.3	37.6	135.3	19.2	20.2	41.9	37.0	22.0
9	32.7	25.0	125.4	42.8	44.6	81.1	18.7	42.2
10	37.4	37.6	24.8	71.9	75.3	54.5	72.5	72.4
11	25.1	32.9	34.9	20.9	19.3	20.4	35.5	26.0
12	39.9	37.5	133.2	28.7	15.8	28.8	23.7	21.5
13	140.4	24.7	121.0	16.5	28.6	16.5	15.5	15.1
14	123.1	39.6	32.0	25.0	20.2	106.4	21.8	20.8
15	59.5	28.2	33.4	30.6	16.0		28.1	23.8
16	22.7	22.9	18.1					
17	22.6	22.9	16.0					
18	19.8	19.9	22.0					
19	19.7	20.0	18.0					
20	16.2	16.6	17.7					
1'		172.3	171.2					
2'		32.2	21.3					
3'		19.6						
4'		140.1						
5'		139.9						
6'		171.5						
7'		8.9						
8'		171.3						

 Table S1. ¹³C NMR data for compounds 2–9

^{a 13}C NMR Data in CDCl₃ at 150 MHz, ^{b 13}C NMR Data in CDCl₃ at 125 MHz, ^{c 13}C NMR Data in CDCl₃ at 100 MHz.

	2 ^a	3 ^a	4 ^a	5 ^b	6 ^b	7 °	8 ^b	9 ^b
NO.	$\delta_{ m H}$	$\delta_{ m H}$	$\delta_{ m H}$	$\delta_{ m H}$				
1		4.60 d (7.1)		1.25 m	1.21 s	2.09 s	2.04 m	1.27 s
2	1.14 m	5.31 t (7.2)	1.87 m	1.62 m	1.42 m	1.31 m	5.25 s	1.32 m
3	1.38 m		1.88 m	1.63 m	1.43 m	1.36 m		1.75 m
4	1.26 m	1.98 m			1.52 m		2.18 m	
5	1.54 m	1.41 m	4.87d (10.3)	1.21 s	1.21 m	1.25 s	1.31 m	5.37 s
6	1.06 m	1.28 m	1.68 m	1.22 m	1.25 m	1.15 m	1.75 m	1.92 m
7	1.21 m	1.42 m	2.01 m	1.23 m	1.27m	1.15 m	1.18 m	1.30 m
8	1.38 m	1.29 m		1.42 m	1.42 m	1.31 m	1.42 m	1.31 m
9	1.39 m	1.30 m	5.16 m	1.45 m	1.72 m	2.04 m	1.31 m	1.48 m
10	1.26 m	1.29 m	2.01 m					
11	1.38 m	1.42 m	2.01 m				1.41 m	1.45 m
12	2.01 m	1.28 m		1.03 s	1.03 s	1.04 s	1.69 s	0.81 d (6.9)
13		1.30 m	5.16 m	1.06 s	1.05 s	1.05 s	0.81 d (6.9)	0.96 d (6.9)
14	5.38 t (7.6)	1.15 m	2.18 m	1.32 s	0.94 d (7.1)	1.28 s	0.96 d (6.9)	1.21 s
15	4.70 t (7.1)	1.52 m		1.36 s	1.13 s	4.68 d (10.4)	1.13 s	1.78 s
16	0.88 s	0.87 d (6.7)	1.12 s					
17	0.85 s	0.86 d (6.7)	1.66 s					
18	0.86 d (6.5)	0.84 d (6.7)	1.66 s					
19	0.87 d (6.5)	0.85 d (6.7)	0.90 d (6.8)					
20	1.69 s	1.68 s	0.89 d (6.8)					
2'		2.63 t (6.9)	2.06 s					
3'		2.70 t (6.9)						
7'		2.00 s						

Table S2. ¹H NMR data for compounds 2–9

^{a 1}H NMR Data in CDCl₃ at 600 MHz, ^{b 1}H NMR Data in CDCl₃ at 500 MHz, ^{c 1}H NMR Data in CDCl₃ at 400 MHz.