Supporting Information

Rec. Nat. Prod. 14:4 (2020) 286-291

Cytotoxic Lathyrane Diterpenoids from the Roots of Euphorbia fischeriana

Jue Li¹, Jianlin He¹, Chunai Yang¹, Xuelong Yan^{2*} and Zhao Yin^{1*}

¹The Second People's Hospital of Yunnan Province, Kunming 650021, P. R. China ²School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China

Table of Contents							
1. General experimental procedures							
2. plant material							
3. Extraction and isolation							
Figure S1: Scifinder search of new compound 1							
Figure S2: Scifinder search of new compound 2							
Table S1: ¹ H NMR (400 MHz) and ¹³ C NMR (100 MHz) data for 1-5							
Figure S3: ¹ H NMR spectrum of 1 in CDCl ₃							
Figure S4: ¹³ C NMR spectrum of 1 in CDCl ₃							
Figure S5: DEPT spectrum of 1 in CDCl ₃							
Figure S6: HSQC spectrum of 1 in CDCl ₃							
Figure S7: HSQC spectrum of 1 in CDCl ₃ ($\delta_{\rm C}$ 5–65 ppm)							
Figure S8: HSOC spectrum of 1 in CDCl ₃ ($\delta_{\rm C}$ 70–150 ppm)							
Figure S9: HMBC spectrum of 1 in CDCl ₃							
Figure S10: ¹ H– ¹ H COSY spectrum of 1 in CDCl ₃							

^{*}Corresponding authors: E-Mail: <u>469105780@qq.com</u> (X-L. Yan), <u>25456109@qq.com</u> (Z. Yin).

Figure S11: NOESY spectrum of 1 in CDCl ₃	15
Figure S12: HRESIMS [M + H] ⁺ spectrum of 1	16
Figure S13: HRESIMS $[M - H]^{-}$ spectrum of 1	17
Figure S14: IR (KBr disc) spectrum of 1	18
Figure S15: ¹ H NMR spectrum of 2 in CDCl ₃	19
Figure S16: ¹³ C NMR spectrum of 2 in CDCl ₃	20
Figure S17: DEPT spectrum of 2 in CDCl ₃	21
Figure S18: HSQC spectrum of 2 in CDCl ₃	22
Figure S19: HMBC spectrum of 2 in CDCl ₃	23
Figure S20: $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of 2 in CDCl ₃	24
Figure S21: NOESY spectrum of 2 in CDCl ₃	25
Figure S22: HRESIMS spectrum of 2	26
Figure S23: IR (KBr disc) spectrum of 2	27

1. General Experimental Procedures

Optical rotations were measured on a Perkin-Elmer 341 polarimeter. UV spectra were recorded on a Shimadzu UV-2450 spectrophotometer. IR spectra were determined on a Bruker Tensor 37 infrared spectrophotometer with KBr disks. NMR spectra were measured on a Bruker AM-400 spectrometer at 25 °C. HRESIMS data were carried out on a Finnigan LCQ Deca instrument. A Shimadzu LC-20AT equipped with an SPD-M20A PDA detector was used for HPLC, and a YMC-pack ODS-A column (250 × 10 mm, S-5 μ m, 12 nm) was used for semipreparative HPLC separation. Silica gel (300–400 mesh, Qingdao Haiyang Chemical Co. Ltd.), reversed-phase C₁₈ (Rp-C₁₈) silica gel (12 nm, S-50 μ m, YMC Co. Ltd.), Sephadex LH-20 gel (Amersham Biosciences), and MCI gel (CHP20P, 75–150 μ m, Mitsubishi Chemical Industries Ltd.) were used for column chromatography (CC). All solvents were of analytical grade (Guangzhou Chemical Reagents Company, Ltd.). V/FITC and Cell cycle were purchased from Keygen Biotech, China. MTT was purchased from Sigma, USA.

2. Plant Material

The roots of *Euphorbia fischeriana* Steud. were collected in November 2018 from Benxi city, Liaoning province, P. R. China and identified by Prof. You-Kai Xu of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, and a voucher specimen (accession number: LD201812) was deposited at the Second People's Hospital of Yunnan Province

3. Extraction and Isolation

The air-dried powder of the roots of *E. fischeriana* (5 kg) was extracted by 95% EtOH (3 × 5 L) at room temperature to give 500 g of crude extract, which was suspended in H₂O (3 L) and partitioned with EtOAc (3 × 3 L). The EtOAc fraction (200 g) was subjected to silica gel CC eluted with a CH₂Cl₂/MeOH gradient (10:0 \rightarrow 10:1) to obtain three fractions (I–VI). Fr. III (20 g) was subjected to MCI gel CC eluted with a MeOH/H₂O gradient (60:40 \rightarrow 100:0) to give three fractions (IIIa–IIIc). Fr. IIIc was separated by silica gel CC eluted with a CH₂Cl₂/MeOH gradient (200:1 \rightarrow 50:1) to give two subfractions (IIIc1 and IIIc2). Fr. IIIc1 was purified by sephadex LH-20 to obtain **5** (100 mg). Fr. IIIc2 was purified by semi-preparative HPLC (MeCN/H₂O, 70:30, 3 mL/min) to obtain **1** (10 mg, $t_R = 12.5$ min), **3** (16 mg, $t_R = 14$ min), and **2** (7 mg, $t_R = 15$ min). Fr. IV was subjected to silica gel CC eluted with CH₂Cl₂/MeOH (50:1) to give two fractions (IVa and IVb). Fr. IVa was purified by CH₂Cl₂/MeOH (80:1) and followed by sephadex LH-20 and to obtain **4** (23 mg).

Figure S1: Scifinder search of new compound 1

Structure Editor:

Click image to change structure or view detail.

Import CXF (File uploaded)

Search Type:

- Exact Structure
- Substructure
- Similarity
- Show precision analysis

ChemDraw'

Launch a SciFinder/SciFinder^n substance or reaction search directly from the latest version of ChemDraw. Learn More

Figure S2: Scifinder search of new compound 2

No.	1		2		3		4		5	
1α	3.53, dd (13.3, 7.6)	45.0	3.53, dd (13.4, 7.4)	44.3	3.53, dd (13.5, 7.4)	44.9	3.31, dd (13.6, 8.4)	46.8	3.47, dd (13.5, 7.2)	44.6
1β			1.75, dd (13.4, 13.4)		1.73, dd (13.5, 13.5)		1.56, dd (13.6, 12.1)		1.76, dd (13.5, 13.5)	
2	2.02, m	38.5	2.02, m	38.4	2.01, m	38.5	1.91, m	38.4	1.99, m	38.6
3	4.15, dd (3.7, 3.7)	78.8	4.14, dd (3.6, 3.6)	78.5	4.13, dd (3.3, 3.3)	78.6	4.15, dd (3.2, 3.2)	79.7	4.13, dd (3.5, 3.5)	78.4
4	1.57, dd (9.4, 3.7)	52.1	1.63, m	51.6	1.57, dd (9.4, 3.3)	52.2	1.43, dd (9.6, 3.2)	53.1	1.61, dd (9.4, 3.5)	52.1
5	3.67, d (9.4)	58.5	3.64, d (9.3)	58.1	3.63, d (9.4)	58.2	3.44, d (9.6)	58.6	3.63, d (9.4)	58.1
6		64.5		63.6		63.9		63.8		63.9
7a	1.62, m	38.6	1.63, m	38.5	1.62, m	38.7	1.60, m	38.9	1.58, m	38.6
7b	2.05, m		2.05, m		2.06, m		2.03, m		2.03, m	
8α	2.01, m	23.2	2.10, m	23.3	2.07, m	23.3	2.06, m	23.1	2.07, m	23.3
8β	1.51, m		1.56, m		1.52, m		1.64, m		1.60, m	
9	1.12, m	33.8	1.27, m	35.2	1.14, m	33.8	1.27, m	35.8	1.24, m	34.8
10		26.3		28.0		26.3		27.9		27.5
11	1.47, dd (11.0, 7.8)	29.7	1.67, dd (10.8, 7.8)	29.8	1.49, dd (11.0, 7.8)	29.7	1.71, dd (11.9, 7.9)	29.9	1.68, dd (11.3, 7.8)	29.5
12	6.97, d (11.0)	144.4	7.27, d (10.8)	150.7	6.99, d (11.0)	144.3	7.84, d (11.9)	152.5	7.10, d (11.3)	147.6
13		134.0		132.4		134.0		136.9		136.8
14		195.2		193.1		195.1		199.2		196.3
15		91.7		91.8		92.0		89.1		91.8
16	1.10, d (6.9)	13.2	1.10, d (6.7)	13.1	1.10, d (6.9)	13.2	1.11, d (6.9)	13.7	1.09, d (6.7)	13.2
17	1.18, s	20.0	1.24, s	20.0	1.19, s	20.0	1.22, s	20.3	1.26, s	20.2
18	1.09, s	29.0	1.12, s	29.0	1.11, s	29.0	1.21, s	29.0	1.10, s	28.9
19	0.81, s	16.1	0.87, s	16.2	0.85, s	16.2	1.12, s	16.2	0.84, s	16.1
20	1.86, s	12.4	a 4.92, d (11.5)	58.1	1.87, s	12.4	4.35, d (12.0)	58.4	4.30, d (12.3)	57.9
			b 4.98, d (11.5)				4.46, d (12.0)		4.49, d (12.3)	
1'		166.0		165.4		165.6				165.6
2'	6.21, d (15.8)	114.5	6.44, d (16.0)	117.1	6.44, d (16.0)	117.4			6.43, d (16.0)	117.2
3'	7.56, d (15.8)	146.2	7.69, d (16.0)	146.8	7.68, d (16.0)	146.5			7.67, d (16.0)	146.8
4'		126.5		133.8		133.9				133.9
5'/9'	7.30, d (8.5)	130.1	7.47, d (7.5)	128.2	7.47, m	128.1			7.46, m	128.1
6'/8'	6.82, d (8.5)	115.9	7.40, m	129.0	7.39, m	129.0			7.38, m	128.9
7′		158.5	7.40, m	130.8	7.39, m	130.7			7.38, m	130.8
20-OAc				170.9						
			1.98, s	20.9						

Table S1. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for 1-5 (δ in ppm, J in Hz)

 $\ensuremath{\mathbb{C}}$ 2020 ACG Publications. All rights reserved.

Figure S3: ¹H NMR spectrum of 1 in CDCl₃

© 2020 ACG Publications. All rights reserved.

Figure S4: ¹³C NMR spectrum of 1 in CDCl₃

© 2020 ACG Publications. All rights reserved.

© 2020 ACG Publications. All rights reserved.

Figure S6: HSQC spectrum of 1 in CDCl₃

Figure S7: HSQC spectrum of **1** in CDCl₃ (δ_C 5–65 ppm)

Figure S8: HSQC spectrum of 1 in CDCl₃ ($\delta_{\rm C}$ 70–150 ppm)

Figure S9: HMBC spectrum of 1 in CDCl₃

© 2020 ACG Publications. All rights reserved.

Figure S10: ¹H-¹H COSY spectrum of 1 in CDCl₃

Figure S11: NOESY spectrum of 1 in CDCl₃

@ 2020 ACG Publications. All rights reserved.

Figure S12: HRESIMS [M + H]⁺ spectrum of 1

Figure S13: HRESIMS [M – H][–] spectrum of 1

Figure S14: IR (KBr disc) spectrum of 1

@ 2020 ACG Publications. All rights reserved.

Figure S15: ¹H NMR spectrum of 2 in CDCl₃

Figure S16: ¹³C NMR spectrum of 2 in CDCl₃

© 2020 ACG Publications. All rights reserved.

© 2020 ACG Publications. All rights reserved.

© 2020 ACG Publications. All rights reserved.

Figure S19: HMBC spectrum of 2 in CDCl₃

© 2020 ACG Publications. All rights reserved.

Figure S20. ¹H–¹H COSY spectrum of 2 in CDCl₃

@ 2020 ACG Publications. All rights reserved.

Figure S21: NOESY spectrum of 2 in CDCl₃

© 2020 ACG Publications. All rights reserved.

Figure S22: HRESIMS spectrum of 2

© 2020 ACG Publications. All rights reserved.

Figure S23: IR (KBr disc) spectrum of 2

@ 2020 ACG Publications. All rights reserved.