Supporting Information

Rec. Nat. Prod. 14:5 (2020) 383-386

Scoparic acid E: A New Labdane Diterpenoid on

Attenuating Palmitate Induced Viability in MIN6 cells from

Scoparia dulcis

Caiyun Zhang^{1#}, Lizhen Chen^{1#}, Yiying Li², Na Wei¹, Lu Zhang¹, Lin

Dong¹, Yong Zhang^{*2} and Xiaopo Zhang^{*1}

¹Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China

²Department of Basic Medicine and Life Sciences, Hainan Medicinal University, Haikou 571199, P. R. China

Table of Contents	Page			
Figure S1: HRESIMS Spectrum of 1 (Scoparic acid E)	2			
Figure S2: ¹ H-NMR (600 MHz, CDCl ₃) Spectrum of 1 (Scoparic acid E)	3			
Figure S3: Enlarged ¹ H-NMR (600 MHz, CDCl ₃) Spectrum of 1 (Scoparic acid E)	4			
Figure S4: ¹³ C-NMR (150 MHz, CDCl ₃) Spectrum of 1 (Scoparic acid E)	4			
Figure S5: Enlarged ¹³ C-NMR (150 MHz, CDCl ₃) Spectrum of 1 (Scoparic acid E)	5			
Figure S6: Enlarged ¹³ C-NMR (150 MHz, CDCl ₃) Spectrum of 1 (Scoparic acid E)	5			
Figure S7: HSQC Spectrum of 1 (Scoparic acid E)	6			
Figure S8: Enlarged HSQC Spectrum of 1 (Scoparic acid E)	6			
Figure S9: ¹ H- ¹ H COSY Spectrum of 1 (Scoparic acid E)	7			
Figure S10: Enlarged ¹ H- ¹ H COSY Spectrum of 1 (Scoparic acid E)	7			
Figure S11: HMBC Spectrum of 1 (Scoparic acid E)				
Figure S12: Enlarged HMBC Spectrum of 1 (Scoparic acid E)	8			
Figure S13: ROESY Spectrum of 1 (Scoparic acid E)	9			
Figure S14: Scifinder Search Report for 1 (Scoparic acid E)	9			
Figure S15: Scifinder Search Report of 95% Similar Compound of 1 (Scoparic acid E)				
Table S1: NMR data of Scoparic acid E and C (δ in ppm, J values in Hz)				
S1: Detail of Bioactivity Test-Cell Viability Assay	12			

^{*} Corresponding authors: e-mail: 935150242@qq.com (Y. Zhang); E-mail: z_xp1412@163.com (X. P. Zhang)

[#] Authors contributed equally to this paper.

Figure S1: HRESIMS Spectrum of 1 (Scoparic acid E)

Figure S4: ¹³C-NMR (150 MHz, CDCl₃) spectrum of 1 (Scoparic acid E)

Figure S8: Enlarged HSQC spectrum of 1 (Scoparic acid E)

Figure S9: ¹H-¹H COSY spectrum of 1 (Scoparic acid E)

Figure S10: Enlarged ¹H-¹H COSY spectrum of 1 (Scoparic acid E)

Figure S12: Enlarged HMBC spectrum of 1 (Scoparic acid E)

Select All Deselect All

0 of 8 Similarity Candidates Selected		Substances
	≥ 99 (most similar)	0
	95-98	1
	90-94	4
	85-89	8
	80-84	6
	75-79	162
	70-74	1778
	65-69	10823
	0-64 (least similar)	52711

Get Substances

Figure S14: Scifinder Search Report for 1 (Scoparic acid E)

• Key Physical Properties

Figure S15: Scifinder Search Report for 95% Similar Compound 1 (Scoparic acid E)

No.	Scoparic acid E ^a		Scoj	paric acid C
	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$
1	37.8	1.74, m	38.16	
	57.0	1.20, m	50.10	
2	18.2	1.78, m	18.79	
2	10.0	1.61, m	10.01	
3	40.0	1.72, m	40.21	
4	47.0		48.18	2 42 1
5	42.3	2.65, brs	44.08	2.42, brs
6	74.0	5.47, brs	74.10	4.71, brs
7	37.0	2.60, brd, (13.2)	37.61	1.97. m
,	5710	2.48, brd, (13.2)	57101	1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
8	144.4		144.40	
9	57.4	1.93, brs	57.71	
10	38.6		38.55	
11	26.8	2.10, m	24.28	
		2.22, t, (13.2)	220	
12	32.4	2.00, m	26.70	
		2.15, m		
13	140.7		150.39	
14	172.9		194.82	
15				
16	127.6	5.67, s	134.23	5.91, s
		6.26, s		6.26, s
17	113.7	4.76, m	113.14	4.65, brs
18	184.7		185.30	
19	19.2	1.36, s	19.73	1.07, s
20	25.6	1.50, s	25.53	1.36,s
1'	129.6		130.73	
2', 6'	130.7	8.04, d, (8.4)	129.88	7.95, d, (7.3)
3', 5'	128.4	7.46, t, (8.4)	128.32	7.30, t, (7.3)
4'	132.8	7.56, t, (8.4)	132.89	7.46, t, (7.3)
7'	166.2		167.35	

Table S1: NMR Data of Scoparic acid E and Scoparic acid C (δ in ppm, *J* values in Hz)

 $^{\rm a}$ Measured at 600 MHz for ^{1}H NMR and 150 MHz for ^{13}C NMR in CDCl3.

S1: Detail of Bioactivity Test-Cell Viability Assay

Cell Lines and Cell Culture

The MIN6 cells were cultured in DRPMI 1640 Medium equilibrated with 5% CO_2 and 95% air at 37°C. The medium was supplemented with 10% fetal calf serum, 100 U/ml penicillin sulfate and 50 µg/ml gentamycin. All experiments were performed when cells reached 80%-90% confluence.

Cell Viability Assay

Cell viability was assessed by the MTT assay. Briefly, MIN6 cells were seeded in 96 well plates at 1×10^4 cells/well. Cells were incubated with 300 µM palmitate for 24 h. MTT solution was added to the cells at a final concentration of 0.5 mg/ml. After incubating for 4 h at 37 °C, with 5% CO₂, the solution was removed, and 150 µL DMSO was added. The precipitate in each well was dissolved for 10min and the optical density (OD) was determined at 570 nm using a microplate reader. The viability of the new compound treated cells was performed as above. The cell viability was calculated according to the following formula.

Cell viability (%) = $\begin{array}{c} PA (OD)-Normal (OD) \\ \hline Compound (OD)-Normal \\ (OD) \end{array} \times 100\%$