Supplementary Data

Rec. Nat. Prod. 15:1 (2021) 46-52

Two New Ecdysteroid Glycosides from the Rhizomes of

Silene tatarinowii Regel

Huawei Zhang^{1,2*}, Yuzhu Tan¹ and Xiaoping Dong¹

¹ School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137,

China

² School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China

Table of Contents	page
Figure S1: The IR spectrum of 1 (in KBr)	3
Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)	4
Figure S3: The ¹ H NMR spectrum of 1 (in pyridine- d_5)	5
Figure S4: The 13 C NMR spectrum of 1 (in pyridine- d_5)	6
Figure S5: The ¹³ C NMR spectrum of 1 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 80 ppm)	7
Figure S6: The HMQC spectrum of 1 (in pyridine- d_5)	8
Figure S7: The HMQC spectrum of 1 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)	9
Figure S8: The HMQC spectrum of 1 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)	10
Figure S9: The HMBC spectrum of 1 (in pyridine- d_5)	11
Figure S10: The HMBC spectrum of 1 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)	12
Figure S11: The HMBC spectrum of 1 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)	13
Figure S12: The ¹ H- ¹ H COSY spectrum of 1 (in pyridine- d_5)	14
Figure S13: The NOESY spectrum of 1 (in pyridine- d_5)	15
Figure S14: New compound search report of SciFinder	16
Figure S15: The IR spectrum of 2 (in KBr)	17
Figure S16: The HR-ESI-MS spectrum of 2 (in MeOH)	18
Figure S17: The ¹ H NMR spectrum of 2 (in pyridine- d_5)	19
Figure S18: The ¹³ C NMR spectrum of 2 (in pyridine- d_5)	20
Figure S19: The ¹³ C NMR spectrum of 2 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 85 ppm)	21
Figure S20: The HMQC spectrum of 2 (in pyridine- d_5)	22
Figure S21: The HMQC spectrum of 2 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)	23
Figure S22: The HMQC spectrum of 2 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)	24
Figure S23: The HMBC spectrum of 2 (in pyridine- d_5)	25
Figure S24: The HMBC spectrum of 2 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)	26
Figure S25: The HMBC spectrum of 2 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)	27
Figure S26: The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of 2 (in pyridine- d_{5})	28
Figure S27: The NOESY spectrum of 2 (in pyridine- d_5)	29
Figure S28: New compound search report of SciFinder	30
Figure S29: The ¹ H NMR spectrum of 3 (in pyridine- d_5)	31
Figure S30: The ¹³ C NMR spectrum of 3 (in pyridine- d_5)	32

^{*} Corresponding author: E-Mail: <u>307838553@qq.com</u> (Huawei Zhang).

Figure S31: The ¹ H NMR spectrum of 4 (in pyridine- d_5)	33
Figure S32: The ¹³ C NMR spectrum of 4 (in pyridine- d_5)	34
Figure S33: The ¹ H NMR spectrum of 5 (in pyridine- d_5)	35
Figure S34: The ¹³ C NMR spectrum of 5 (in pyridine- d_5)	36
Figure S35: The ¹ H NMR spectrum of 6 (in pyridine- d_5)	37
Figure S36: The ¹³ C NMR spectrum of 6 (in pyridine- d_5)	38
Table S1: ¹³ C NMR data for compounds 1–6 and 20-hydroxyecdysone	39

Figure S1: The IR spectrum of 1 (in KBr)

Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)

Figure S3: The ¹H NMR spectrum of 1 (in pyridine- d_5)

Figure S4: The ¹³C NMR spectrum of 1 (in pyridine- d_5)

Figure S5: The ¹³C NMR spectrum of 1 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 80 ppm)

Figure S6: The HMQC spectrum of 1 (in pyridine- d_5)

Figure S7: The HMQC spectrum of 1 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)

Figure S8: The HMQC spectrum of 1 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)

Figure S9: The HMBC spectrum of 1 (in pyridine-*d*₅)

Figure S10: The HMBC spectrum of 1 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)

Figure S11: The HMBC spectrum of 1 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)

Figure S12: The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of 1 (in pyridine- d_5)

Figure S13: The NOESY spectrum of 1 (in pyridine-*d*₅)

Figure S14: New compound search report of SciFinder

Figure S17: The ¹H NMR spectrum of 2 (in pyridine- d_5)

Figure S18: The 13 C NMR spectrum of 2 (in pyridine- d_5)

Figure S19: The ¹³C NMR spectrum of 2 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 85 ppm)

Figure S21: The HMQC spectrum of 2 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)

Figure S22: The HMQC spectrum of 2 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)

Figure S23: The HMBC spectrum of 2 (in pyridine-*d*₅)

Figure S24: The HMBC spectrum of 2 (in pyridine- d_5) (From δ_C 15 ppm to δ_C 55 ppm)

Figure S25: The HMBC spectrum of 2 (in pyridine- d_5) (From δ_C 55 ppm to δ_C 110 ppm)

Figure S26: The ¹H-¹H COSY spectrum of 2 (in pyridine-*d*₅)

Figure S27: The NOESY spectrum of 2 (in pyridine-*d*₅)

Figure S28: New compound search report of SciFinder

Figure S29: The ¹H NMR spectrum of 3 (in pyridine- d_5)

Figure S30: The ¹³C NMR spectrum of 3 (in pyridine-*d*₅)

Figure S31: The ¹H NMR spectrum of 4 (in pyridine- d_5)

Figure S32: The ¹³C NMR spectrum of 4 (in pyridine-*d*₅)

Figure S33: The ¹H NMR spectrum of 5 (in pyridine- d_5)

Figure S34: The 13 C NMR spectra of 5 (in pyridine- d_5)

Figure S35: The ¹H NMR spectrum of 6 (in pyridine- d_5)

Figure S36: The ¹³C NMR spectra of 6 (in pyridine- d_5)

			ompound	JI Juna	20 nyuru	<i></i>	
Position	1	2	3	4	5	6	20-hydroxyecdysone
1	39.9	39.0	38.3	38.5	38.0	38.5	37.4
2	68.5	68.6	68.6	68.6	68.1	68.5	68.7
3	80.1	81.5	68.9	68.7	68.0	68.5	68.5
4	32.2	32.2	32.9	33.0	32.5	33.1	32.2
5	53.0	52.9	50.9	51.9	51.5	52.1	50.5
6	204.3	203.4	203.2	204.2	203.3	203.8	206.4
7	122.1	122.0	123.5	122.3	121.9	122.3	122.1
8	167.8	167.1	148.4	166.5	164.9	166.1	168.0
9	34.8	34.7	39.9	34.9	34.3	32.9	35.1
10	39.1	39.8	40.7	39.2	38.7	39.2	39.1
11	21.5	21.5	25.8	21.8	20.9	22.1	21.5
12	32.4	32.4	120.9	81.0	31.4	32.2	32.5
13	48.6	48.5	175.0	48.7	47.6	48.6	57.3
14	84.6	84.6	49.6	84.7	83.8	84.5	85.2
15	32.2	32.4	40.1	32.2	31.3	32.3	31.7
16	22.2	22.2	22.3	22.1	22.1	21.5	24.4
17	50.6	50.6	49.9	51.1	51.4	51.9	37.4
18	18.4	18.4	23.8	18.4	18.1	18.1	18.1
19	24.8	24.7	25.8	25.0	24.4	24.9	24.4
20	77.5	77.4	76.8	76.8	90.8	81.9	78.4
21	22.0	22.0	21.5	22.8	25.1	26.1	21.5
22	78.1	78.1	77.2	81.0	162.7	217.5	77.9
23	28.0	28.0	27.9	26.6	119.7	42.9	27.3
24	43.2	43.2	43.0	42.2	173.1	38.9	43.8
25	70.2	70.1	70.3	69.9		69.4	71.3
26	30.7	30.6	30.9	30.2		30.4	28.9
27	30.5	30.5	30.4	30.6		30.3	29.7
28				171.9			
29				21.6			
	Glc	Gal					
1'	104.4	104.2					
2'	73.0	71.3					
3'	80.5	79.9					
4'	72.1	71.8					
5'	79.8	73.1					
6'	68.7	61.3					
	Gal	Gal					
1'	101.0	103.7					
2'	71.4	71.8					
3'	71.8	71.6					
4'	71.4	71.8					
5'	72.4	73.9					
6'	63.0	63.1					

 Table S1: ¹³C NMR data for compounds 1–6 and 20-hydroxyecdysone