Supporting Information

Org. Commun. 13:4 (2020) 155-164

Synthesis, spectral characterization, antimicrobial activity

and docking studies against DNA Gyrase-A of new 4-chloro-3-

nitrobenzene sulfonamide derivatives

K. Pushpa Kumar¹, Reddi Mohan Naidu Kalla^{2*}, M. Varalakshmi³, Ch. Venkataramaiah⁴, K. Swetha Kumari⁵, Jayakumar Kannali⁶, D. Venkatramana Reddy^{*7} and C. Nagarajua^{* 1}

¹Department of Chemistry, S. V. University, Tirupati-517501, Andhra Pradesh, India ²Department of Science and Humanities, Sri Venkateswara Engineering College, Tirupati-517507, Andhra Pradesh, India ³Center for Applied Sciences, Sree Vidyanikethan Engineering College, A. Rangampet, Tirupati,

517502, Andhra Pradesh, India

⁴Department of Zoology, Sri Venkateswara Vedic University, Tirupati-517502, Andhra Pradesh, India ⁵Department of Biosciences and Sericulture, Sri Padmavati Mahila Visvavidyalayam, Tirupati-517 502, Andhra Pradesh, India

⁶Department of Chemistry, S. V. University, Tirupati-517502, Andhra Pradesh, India ⁷Department of Chemistry, S. G. Government Degree College, Piler, India

Table of Contents	Page
Table S1: Antibacterial activity of synthesized comounds 3(a-j)	2
Table S2 : Antifungal activity of synthesized compounds 3 (a-j)	3
Figure S1: Antibacterial activity of the newly synthesized comounds	4
Figure S2: IR spectrum of compound 3b	5
Figure S3: ¹ H-NMR (400 MHz, CDCl ₃) spectrum of compound 3b	6
Figure S4: ¹³ C-NMR (100 MHz, CDCl ₃) spectrum of compound 3b	7
Figure S5: ESI-MS of compound 3b	8

Droduot	Zone of Inhibition in mm				
	P. aeruginosa	K. pneumoniae	E. coli	S. aureus	
3 a	12	15	14	15	
3b	14	06	09	10	
3c	25	28	20	20	
3d	28	25	26	23	
3e	26	25	22	24	
3f	29	24	28	26	
3g	15	08	13	10	
3h	16	18	12	15	
3i	17	14	16	15	
3ј	15	10	12	14	
Std.	35	38	40	30	

Table S1: Antibacterial activity of synthesised compounds 3(a-j)

P. aeruginosa: Pseudomonas aeruginosa, K. pneumoniae: Klebsiellapneumoniae, E. coli: Escherichia coli, S. aureus: Staphylococcus aureus, Stand: Chloramphenicol.Concentration at 100 µg/mL.

Product	Zone of Inhibition in mm					
	A. niger	T. viride	A. flavus	P. chrysogenum		
3a	08	09	10	08		
3b	09	11	09	10		
3c	15	12	11	09		
3d	12	10	09	10		
3e	13	11	10	11		
3f	16	12	11	12		
3g	12	10	08	09		
3h	10	08	09	10		
3i	09	10	09	11		
3j	15	08	10	09		
Std.	18	16	13	14		

Table S2 : Antifungal activity of synthesized compounds 3 (a-j)

A.niger: Aspergillus niger, T. viride: Trichoderma viride, A. flavus: Aspergillus flavus, P. chrysogenum: Penicillium chrysogenum, Stand: nystatin. Concentration at 100 µg/mL.

Figure S1: Antibacterial activity of the newly synthesised compounds

Figure S2: IR spectrum of compound 3b

Figure S3: ¹H-NMR (400 MHz, CDCl₃) spectrum of compound 3b

Figure S4: ¹³C-NMR (100 MHz, CDCl₃) Spectrum of compound 3b

Figure S5: ESI-MS of compound 3b