Supporting Information

Rec. Nat. Prod. 15:3 (2021) 169-174

Antiradical Aromatic Constituents from Pleurotus eryngii

Xin-Xin Cao¹, Jin-yue Sun², Chao Liu², Jun-Sheng Zhang^{1*} and

Hua Zhang^{1*}

¹School of Biological Science and Technology, University of Jinan, Jinan 250022

²Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences,

Table of Contents	Page
Figure S1 : The ¹ H NMR spectrum of 1 in CDCl ₃ .	1
Figure S2 : The expanded ¹ H NMR spectrum of 1 in $CDCl_3$.	1
Figure S3: The ¹³ C NMR spectrum of 1 in CDCl ₃ .	2
Figure S4: The ¹ H- ¹ H COSY spectrum of 1 in CDCl ₃ .	2
Figure S5: The HSQC spectrum of 1 in CDCl ₃ .	3
Figure S6: The HMBC spectrum of 1 in CDCl ₃ .	3
Figure S7: The expanded HMBC spectrum of 1 in CDCl ₃ .	4
Figure S8: The expanded HMBC spectrum of 1 in CDCl ₃ .	4
Figure S9: HR-ESIMS spectrum of 1	5
Figure S10 : The ¹ H NMR spectrum of 2 in CDCl ₃ .	5
Figure S11: The expanded ¹ H NMR spectrum of 2 in CDCl ₃ .	6
Figure S12: The ¹³ C NMR spectrum of 2 in CDCl ₃ .	6
Figure S13: The $^{1}H^{-1}H$ COSY spectrum of 2 in CDCl ₃ .	7
Figure S14: The HSQC spectrum of 2 in CDCl ₃ .	7
Figure S15: The HMBC spectrum of 2 in CDCl ₃ .	8
Figure S16:HR-APCIMS spectrum of 2	8
Figure S17:Structures of new compounds and the most similar known compounds	9
(1, 1A, 2, 2A)	
Table S1 : ¹ H NMR data of compounds 1, 1A, 2 in CDCl ₃ , 2A in acetone- d_6	9

Jinan 250100, China

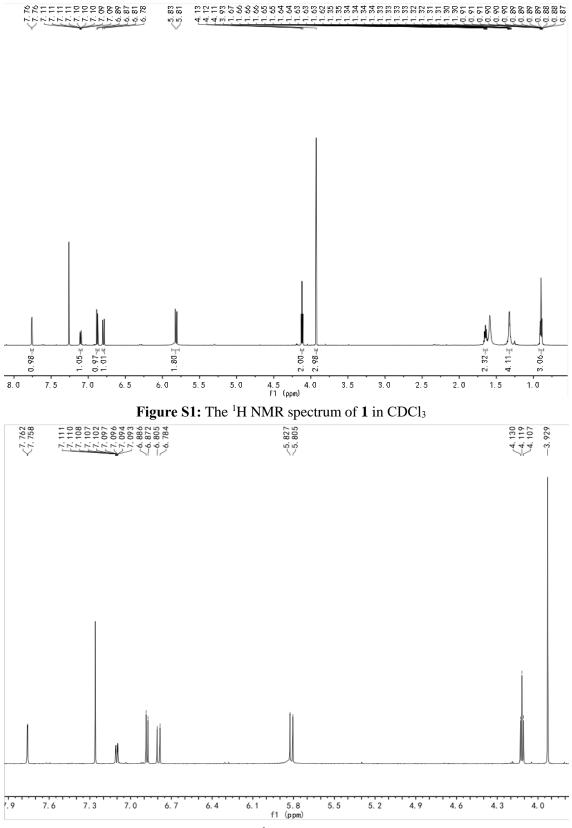


Figure S2: The expanded ¹H NMR spectrum of 1 in CDCl₃

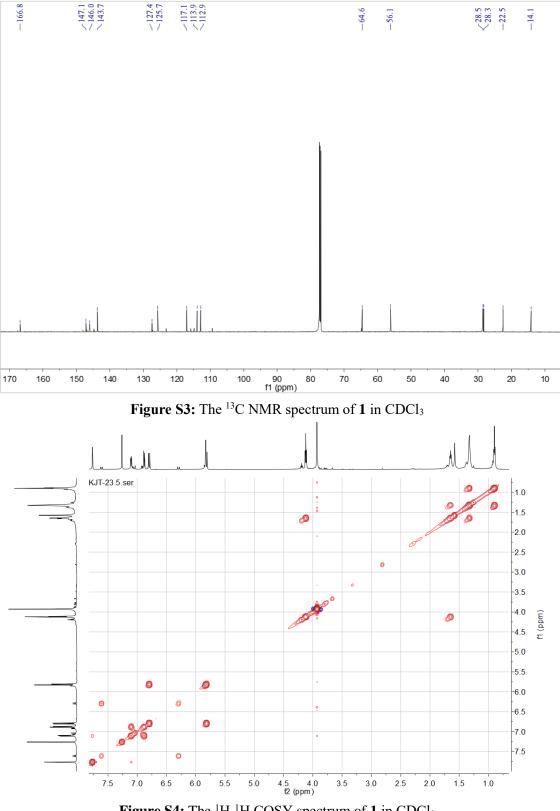


Figure S4: The ¹H-¹H COSY spectrum of 1 in CDCl₃

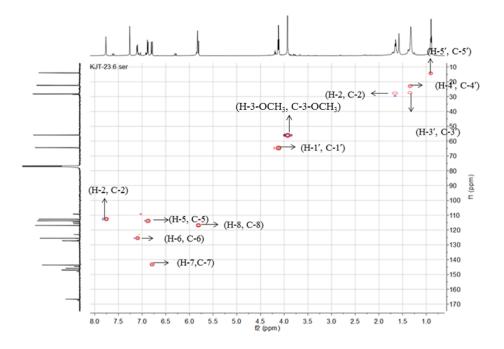


Figure S5: The HSQC spectrum of 1 in CDCl₃

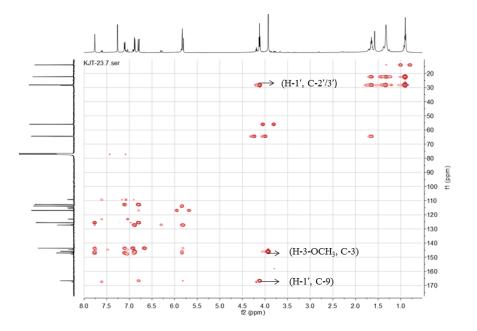
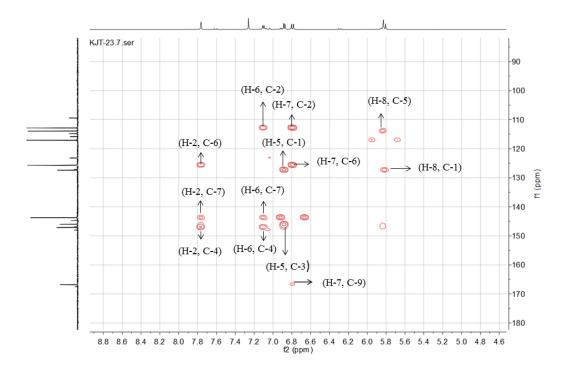



Figure S6: The HMBC spectrum of 1 in CDCl₃

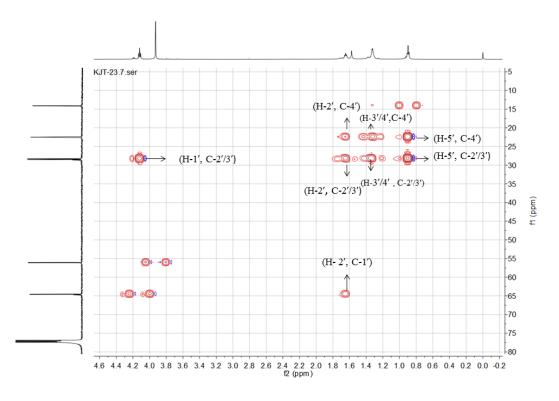
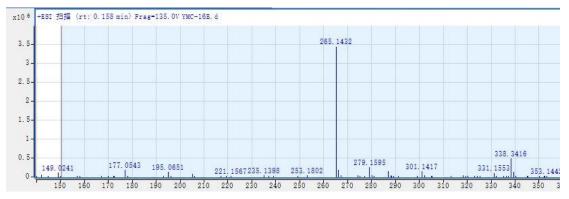
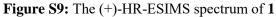




Figure S8: The expanded HMBC spectrum of 1 in CDCl₃

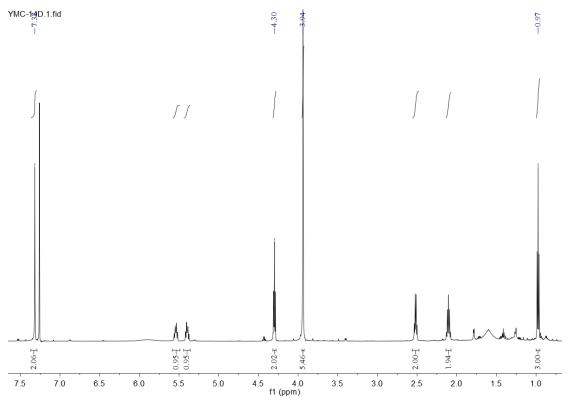


Figure S10: The ¹H NMR spectrum of 2 in CDCl₃

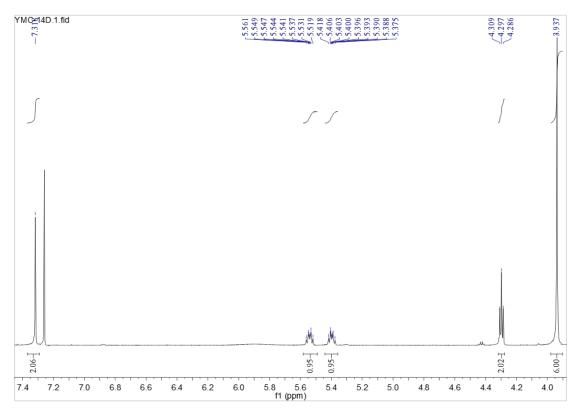


Figure S11: The expanded ¹H NMR spectrum of 2 in CDCl₃

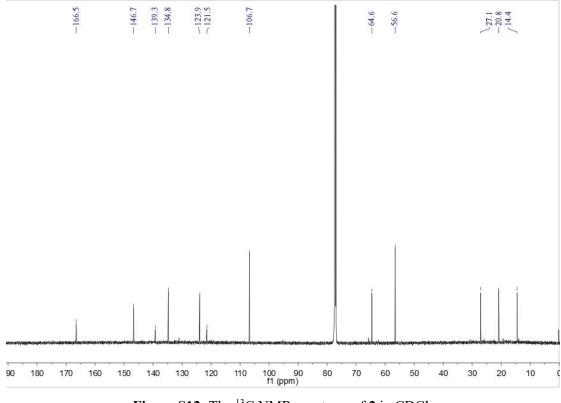
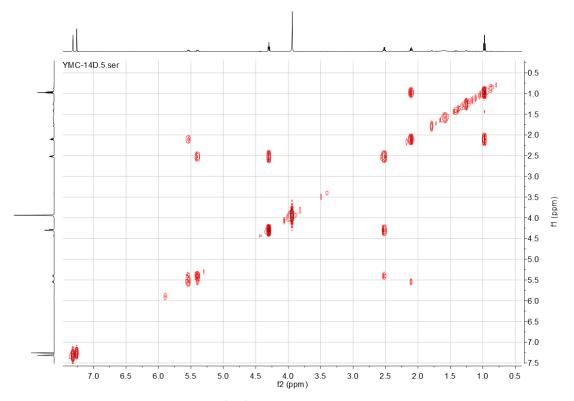



Figure S12: The ¹³C NMR spectrum of 2 in CDCl₃

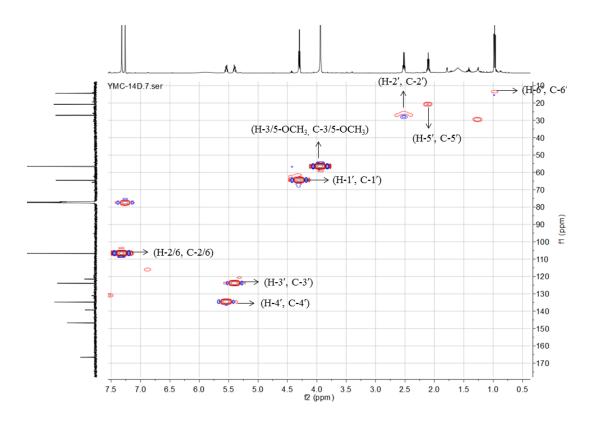


Figure S14: The HSQC spectrum of 2 in CDCl₃

Figure S15: The HMBC spectrum of 2 in CDCl₃

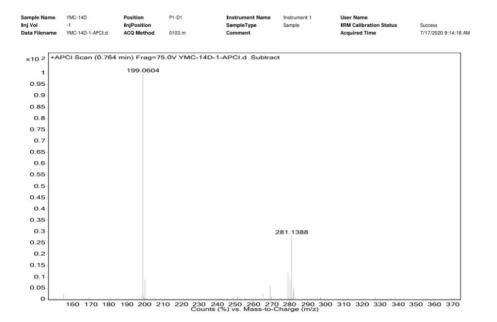


Figure S16: The (+)-HR-APCIMS spectrum of 2

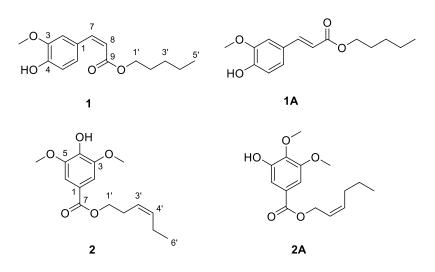


Figure S17: Structures of new compounds (1 and 2) and the most similar known compounds (1A and 2A)

No	1	$1A^1$	2	2A ²
1				
2	7.76 s	7.04 m	7.32s	7.16 s
3				
4				
5	6.90 d (8.1)	6.90 d (8.0)		
6	7.10 dd (8.1, 1.5)	7.04 m	7.32s	7.20 s
7	6.80 d (12.8)	7.60 d (15.9)		
8	5.80 d (12.8)	6.28 d (15.9)		
9				
1′	4.12 t (6.78)	4.20 t	4.30 t (7.0)	4.83 d
2'	1.65 m	1.70 m	2.52 qd (7.1, 1.4)	5.64-5.73 m
3'	1.65 m	1.36 m	5.40 dtt (10.6, 7.3, 1.6)	5.64-5.73 m
4′	1.33 m	1.36 m	5.50 m	2.15-2.20 m
5'	0.90 t (6.88)	0.88 t	2.11 m	1.39-1.47 m
6'			0.97 t (7.5)	0.93 t
3-OMe	3.93 s	3.91 s	3.94 s	3.89 s
4-OMe				3.83 s
5-OMe			3.94 s	

Table S1: ¹H NMR data of compounds 1, 1A, 2 in CDCl₃, 2A in acetone-d₆

References

- N.G. Li, Z.H. Shi, Y.P. Tang, B.Q. Li and J.A. Duan (2009) Highly efficient esterification of ferulic acid under microwave irradiation, *Molecules* 14, 2118-2126.
- [2] R.I. Paramita, A. Arsianti and M. Radji (2018) Synthesis and cytotoxic activities of hexyl esters derivatives of gallic acid against MCF-7 cell line, *Orient. J. Chem.* 34, 295-300.