Supporting Information

Rec. Nat. Prod. X:X (2021) XX-XX

Two New Sesquiterpenoids from Chloranthus henryi Hemsl

Yuting Bian¹, Fangyou Chen¹, Weiming Huang¹, Zhichao Chen¹, Pengcheng Shuang² and Yongming Luo^{1*}

¹School of Pharmacy, Jiangxi University of Traditional Chinese Medicine,

Nanchang, Jiangxi 330004, P. R.China

²School of Chinese Materia Medica, Beijing University of Chinese Medicine,

Beijing, 100029, P. R.China

Table of Contents	Page			
Figure S1: HR-ESI-MS Spectrum of 1 (Chloratene F)				
Figure S2: ¹ H-NMR (500 MHz, CDCl ₃) Spectrum of 1 (Chloratene F)				
Figure S3: ¹³ C-NMR (125 MHz, CDCl ₃) Spectrum of 1 (Chloratene F)	4			
Figure S4: HSQC Spectrum of 1 (Chloratene F) (From δ_H 3.5 ppm to δ_H 7.5ppm)	5			
Figure S5: HSQC Spectrum of 1 (Chloratene F) (From δ_H 0 ppm to δ_H 3.5ppm)	6			
Figure S6: HMBC Spectrum of 1 (Chloratene F)	7			
Figure S7: HMBC Spectrum of 1 (Chloratene F) (From $\delta_{\rm C}$ 10 ppm to $\delta_{\rm C}$ 100 ppm)	8			
Figure S8: HMBC Spectrum of 1 (Chloratene F) (From δ_C 110 ppm to δ_C 200 ppm)	9			
Figure S9: ¹ H- ¹ H COSY Spectrum of 1 (Chloratene F)	10			
Figure S10: ORTEP Spectrum of 1 (Chloratene F)	11			
Figure S11: CD Spectra of 2 (Chloratene F)	12			
Figure S12: HR-ESI-MS Spectrum of 2 (Chlomultin G)	13			
Figure S13: ¹ H-NMR (600 MHz, CDCl ₃) Spectrum of 2 (Chlomultin G)	14			
Figure S14: ¹³ C-NMR (150 MHz, CDCl ₃) Spectrum of 2 (Chlomultin G)	15			
Figure S15: HSQC Spectrum of 2 (Chlomultin G)	16			
Figure S16: HMBC Spectrum of 2 (Chlomultin G)	17			
Figure S17: HMBC Spectrum of 2 (Chlomultin G) (From $\delta_{\rm C}$ 100ppm to 180 ppm)	18			
Figure S18: HMBC Spectrum of 2 (Chlomultin G) (From δ_C 10 ppm to 80 ppm)	19			
Figure S19: ¹ H- ¹ H COSY Spectrum of 2 (Chlomultin G)	20			
Figure S20: ORTEP Spectrum of 2 (Chlomultin G)	21			
Figure S21: CD Spectra of 2 (Chlomultin G)	22			
Table 1. The most similar compound data to compound 1	23			
Table 2. The most similar compound data to compound 2	24			

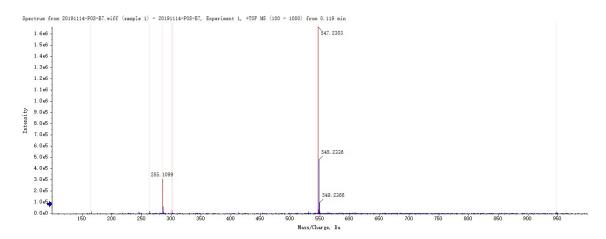


Figure S1: HR-ESI-MS Spectrum of 1 (Chloratene F)

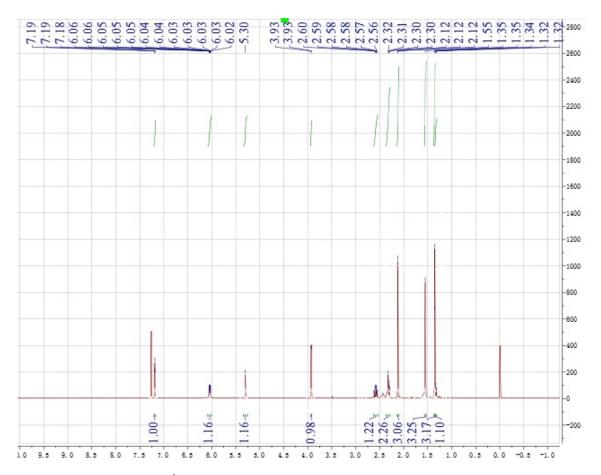


Figure S2: ¹H-NMR (600 MHz, CDCl₃) Spectrum of 1 (Chloratene F)

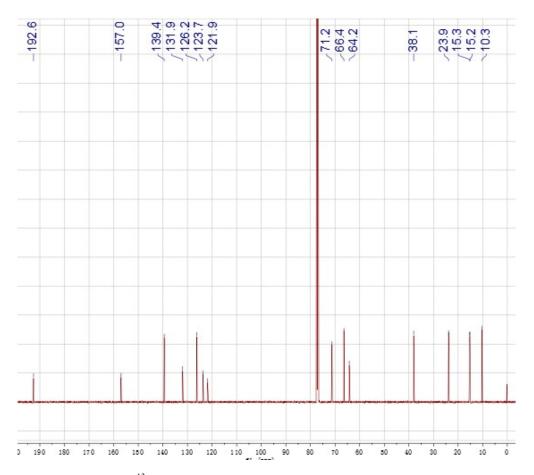


Figure S3: ¹³C-NMR (150MHz, CDCl₃) Spectrum of 1 (Chloratene F)

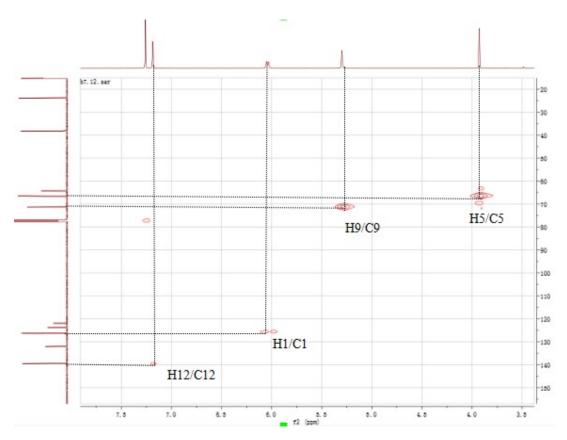


Figure S4: HSQC Spectrum of 1 (Chloratene F) (From $\delta_{\rm H}$ 3.5 ppm to $\delta_{\rm H}$ 7.5ppm)

Figure S5: HSQC Spectrum of 1 (Chloratene F) (From $\delta_{\rm H}$ 0 ppm to $\delta_{\rm H}$ 3.5ppm)

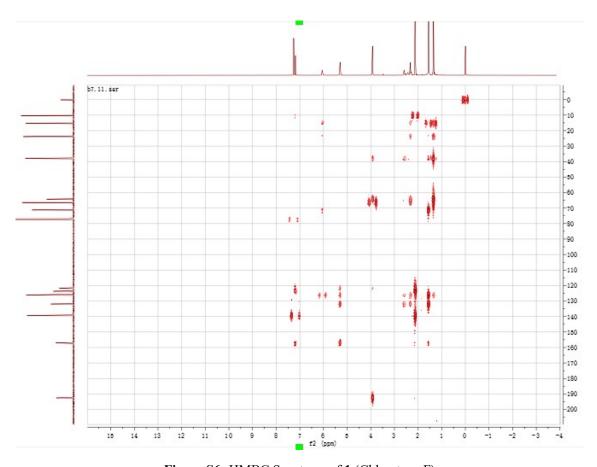
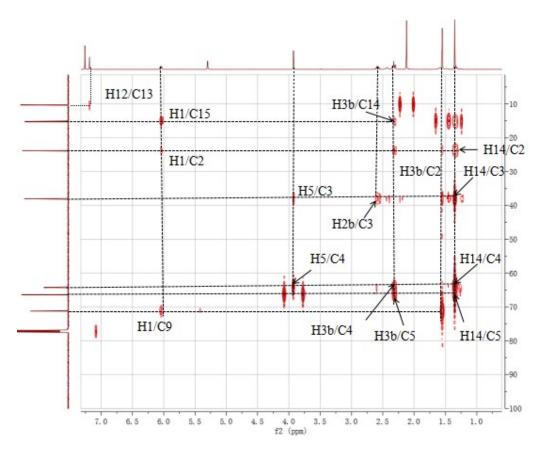
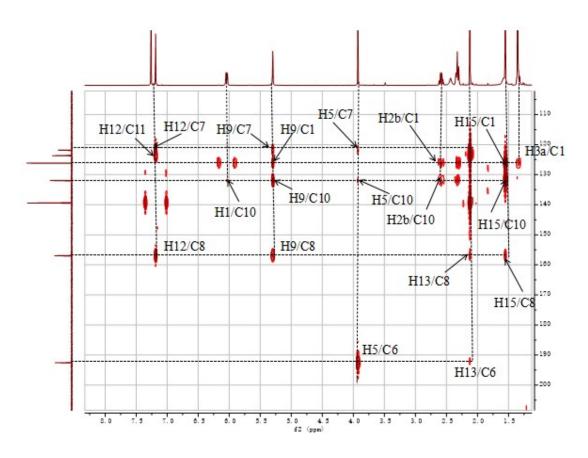




Figure S6: HMBC Spectrum of 1 (Chloratene F)

Figure S7: HMBC Spectrum of **1** (Chloratene F) (From $\delta_{\rm C}$ 10 ppm to $\delta_{\rm C}$ 100 ppm)

Figure S8: HMBC Spectrum of **1** (Chloratene F) (From δ_C 110 ppm to δ_C 200 ppm)

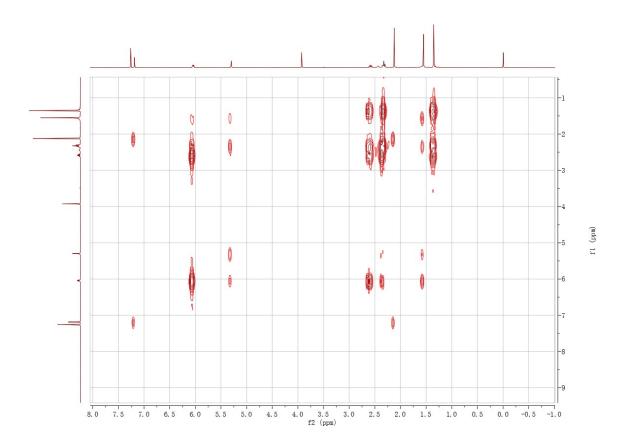


Figure S9: ¹H-¹H COSY Spectrum of 1 (Chloratene F)

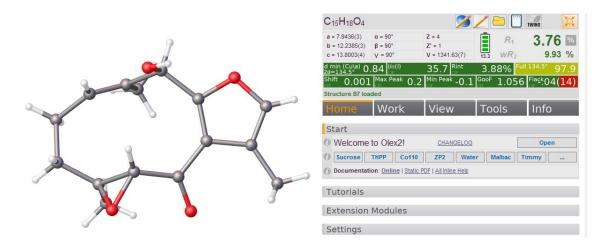


Figure S10: ORTEP Spectrum of 1 (Chloratene F)

[Measurement Information]

Instrument name J-1500 Model name J-1500 Serial No. B049961638

Photometric mode CD, HT, Abs

Measure range 500 - 200 nm

Data pitch 1 nm

CD scale 200 mdeg/0.1 dOD FL scale 200 mdeg/0.1 dODD

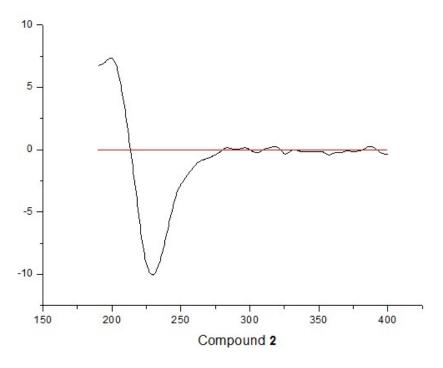


Figure S11: CD Spectra of 1 (Chlomultin G)

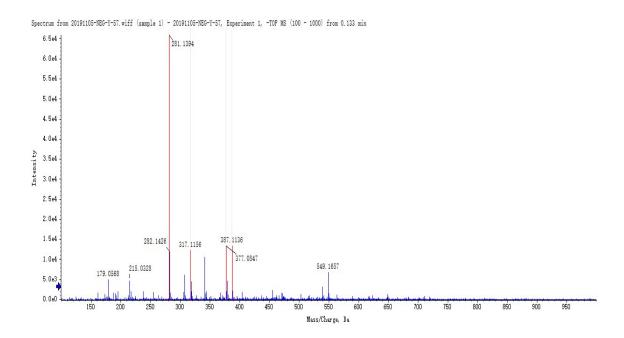


Figure S12: HR-ESI-MS Spectrum of 2 (Chlomultin G)

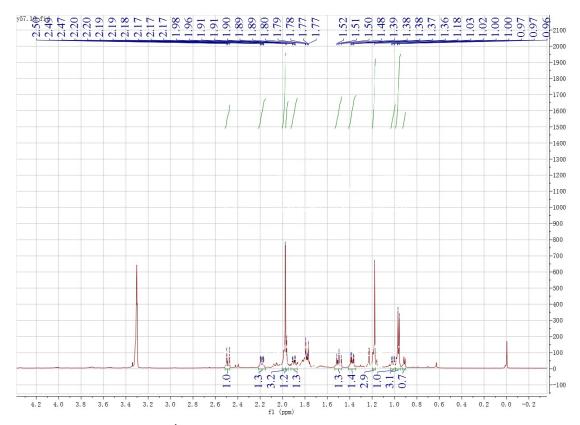


Figure S13: ¹H-NMR (600 MHz, CDCl₃) Spectrum of 2 (Chlomultin G)

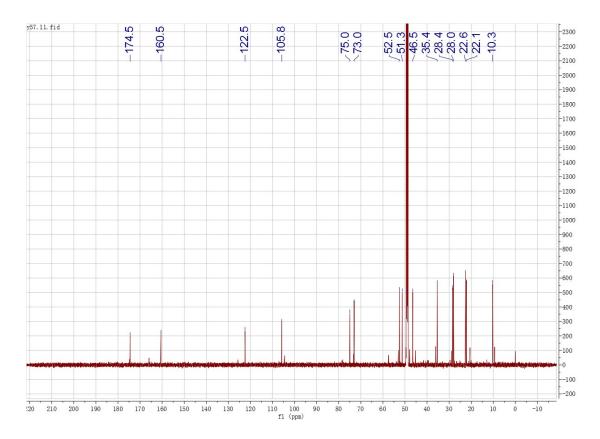


Figure S14: ¹³C-NMR (150 MHz, CDCl₃) Spectrum of 2 (Chlomultin G)

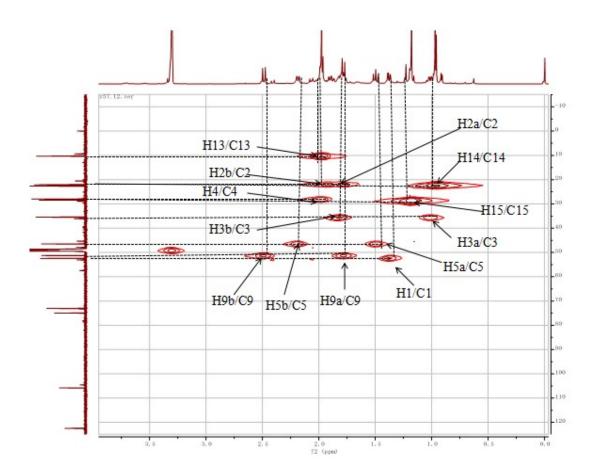


Figure S15: HSQC Spectrum of 2 (Chlomultin G)

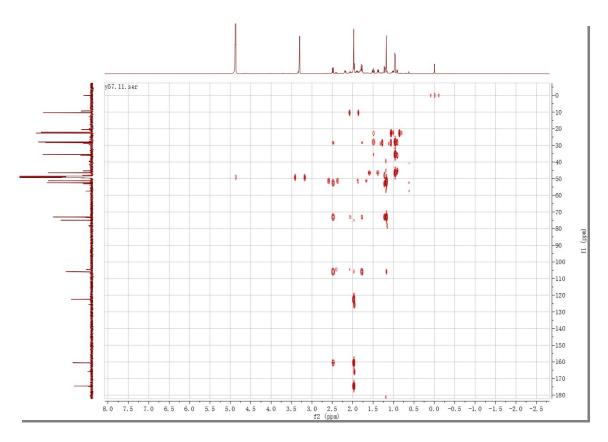
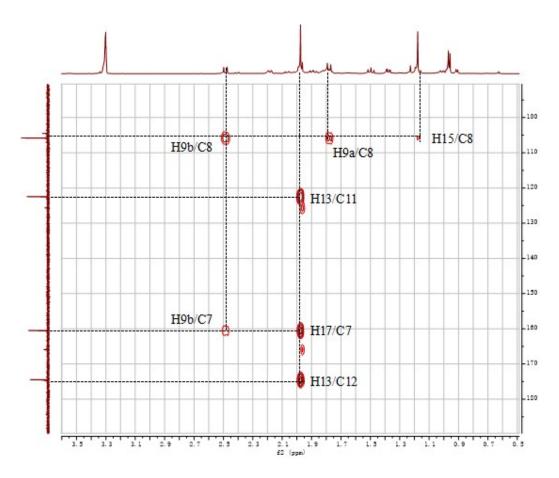
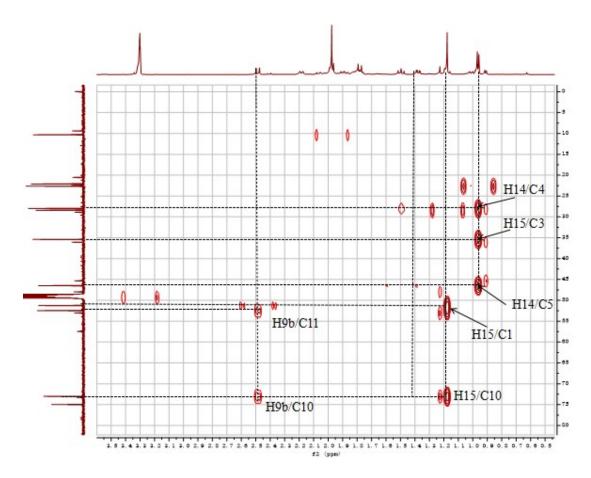




Figure S16: HMBC Spectrum of 2 (Chlomultin G)

Figure S17: HMBC Spectrum of **2** (Chlomultin G) (From $\delta_{\rm C}$ 100ppm to 180 ppm)

Figure S18: HMBC Spectrum of **2** (Chlomultin G) (From δ_C 10 ppm to 80 ppm)

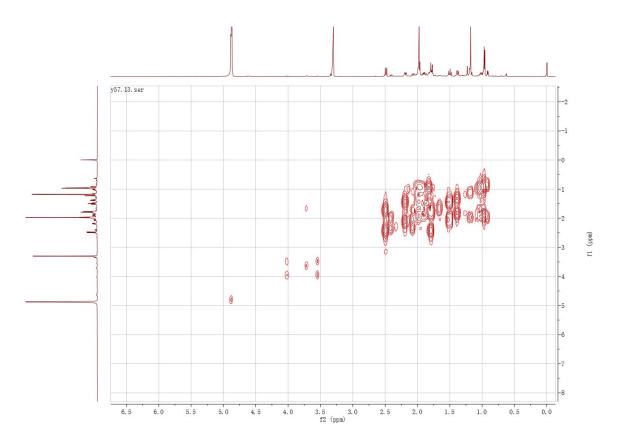


Figure S19: ¹H-¹H COSY Spectrum of 2 (Chlomultin G)

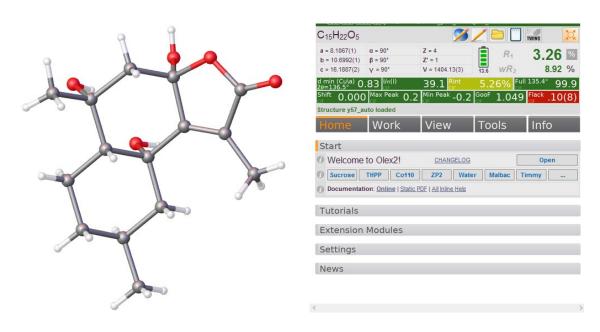


Figure S20: ORTEP Spectrum of 2 (Chlomultin G)

[Measurement Information]

Instrument name J-1500

Model name J-1500 Serial No. B049961638 CD Overload detect 417

Photometric mode CD, HT, Abs

Measure range 400 - 190 nm

Data pitch 0.5 nm

CD scale 200 mdeg/0.1 dOD FL scale 200 mdeg/0.1 dOD

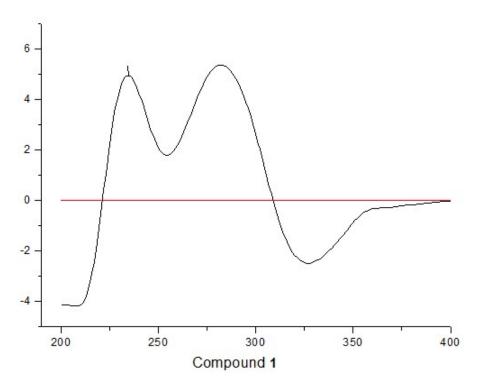


Figure S21: CD Spectra of 2 (Chlomultin G)

similar compound

new compound

Table 1. The most similar compound data to compound 1

NO.	similar compound		new compound	
	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{ m C}$
1	5.45 (1H, d, J = 9.1 Hz)	131.1	6.04 (1H, m)	126.2
2a	-	24.6	2.59 (1H, m)	23.9
2b	-		2.30 (1H, m)	
3a	-	37.9	2.32 (1H, m)	20.1
3b	-		1.33 (1H, m)	38.1
4	-	63.9	-	64.2
5	3.81 (1H, d, J = 1.0 Hz)	66.5	3.93 (1H, d, J = 1.0 Hz)	66.4
6	-	192.1	-	192.6
7	-	131.0	-	123.7
8	-	157.0	-	157.0
9	3.71 (2H, m)	41.8	5.30 (1H, s)	71.2
10	-	122.2	-	131.9
11	-	123.2	-	121.9
12	7.08 (1H, s)	138.0	7.19 (1H, t, J = 1.2 Hz)	139.4
13	2.11 (3H, s)	10.2	2.12 (1H, d, J = 1.3 Hz)	10.3
14	1.34 (3H, s)	15.6	1.55 (3H, s)	15.3
15	1.60 (3H, s)	15.1	1.35 (3H, s)	15.2

15 9 OH HO 10 8 O12 2 16 77 11 3 4 5

new compound

similar compound

Table 2. The most similar compound data to compound 2

NO.	similar compound		new compound	
	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{ m C}$
1	1.51 (1H, dd, <i>J</i> = 12.4, 3.6 Hz)	50.9	1.38 (1H, dd, J = 12.3, 3.7 Hz)	52.5
2a	1.72 (1H, m)	21.8	1.77 (1H, m)	22.1
2b	2.01 (1H, m)		1.90 (1H, m)	
3a	2.04 (1H, m)	33.8	1.01 (1H, m)	35.4
3b	2.33 (1H, m)		1.79 (1H, m)	
4	-	145.0	1.96 (1H, m)	28.0
5a	2.65 (1H, m)	44.0	2.18 (1H, m)	46.5
5b	2.53 (1H, m)	44.9	1.50 (1H, m)	
6	-	74.0	-	75.0
7	-	159.4	-	160.5
8	-	104.6	-	105.8
9a	1.73 (1H, m)	50.3	1.77 (1H, m)	51.3
9b	2.41 (1H, m)		2.49 (1H, m)	
10	-	71.6	-	73.0
11	-	120.5	-	122.5
12	-	172.5	-	174.5
13	1.90 (3H, s)	10.3	2.05 (3H, s)	10.3
14a	4.56 (1H, s)	110.7	0.96 (3H, d, J = 6.7 Hz)	22.6
14b	4.75 (1H, s)			
15	1.09 (3H, s)	28.7	1.98 (3H, s)	28.4