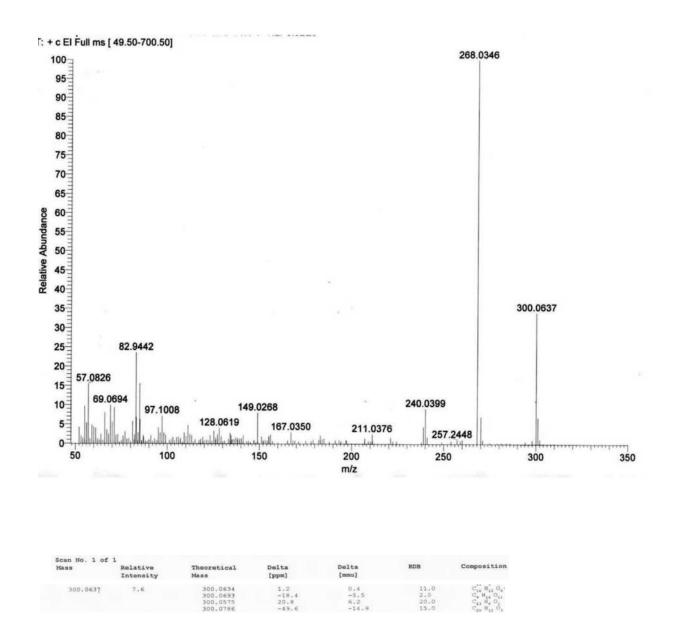
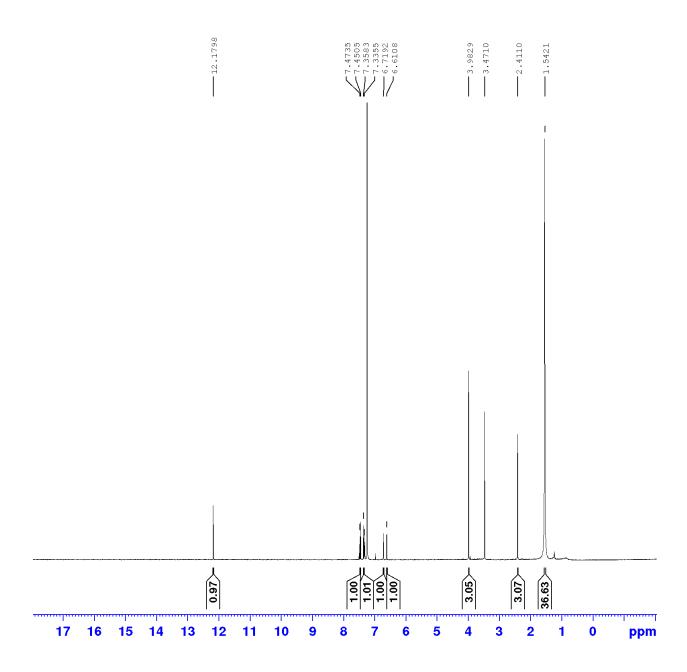
Supporting Information

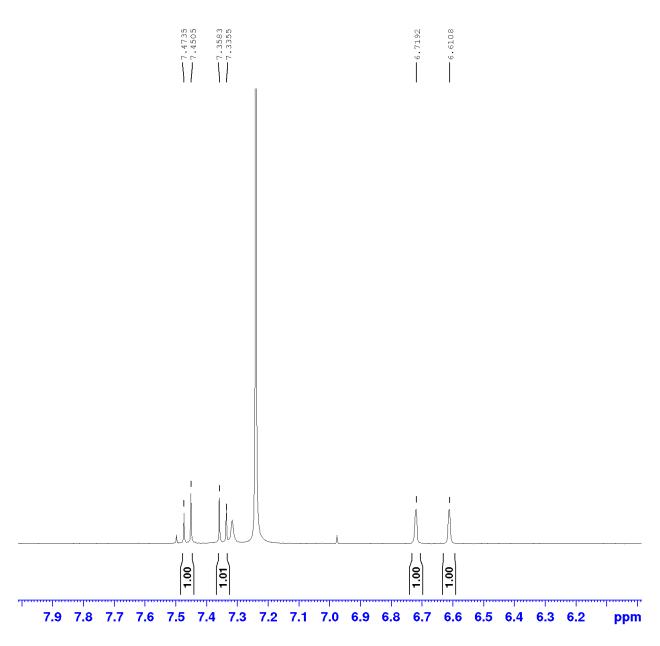
Rec. Nat. Prod. 15:6 (2021) 608-612

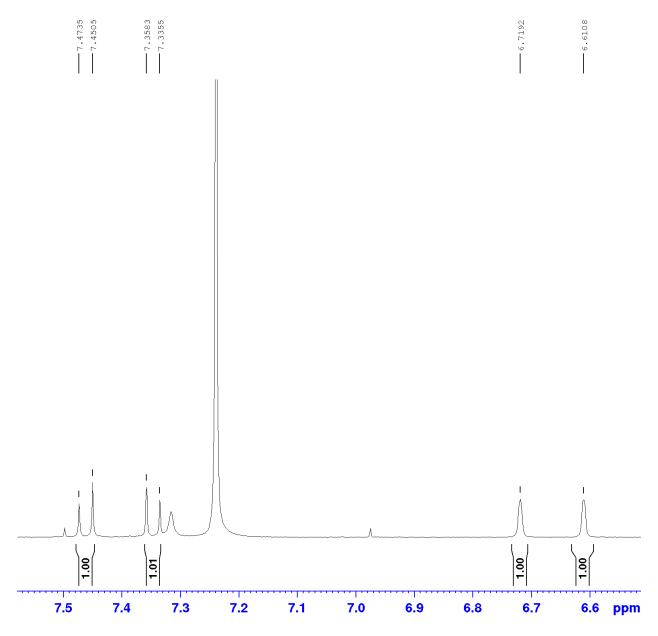

Bioactive Natural Products from Endophytic Fungus Aspergillus nidulans Associated with Nyctanthes arbor-tristis Linn.

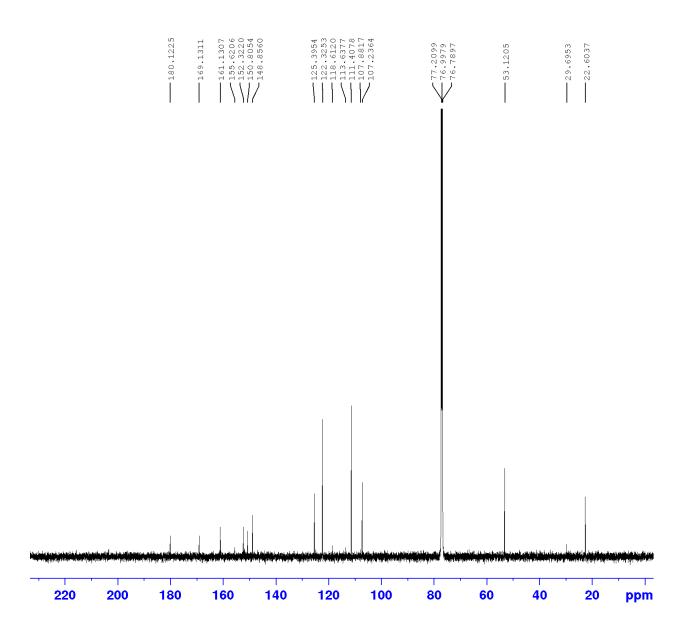
Talea Sana¹, Bina S. Siddiqui^{1, *}, Majid Khan¹, Saleem Shahzad², Samia Sattar² and Sabira Begum¹


¹HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan

²Department of Agriculture & Agribusiness Management, University of Karachi


Table of Contents	Page
Figure S1: HR-EIMS spectrum of 1 (1,5-dihydroxy-3-methylxanthone-6-carboxylic acid	2
methyl ester)	
Figure S2: ¹ H-NMR (400 MHz, CDCl ₃) spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-	3
carboxylic acid methyl ester)	
Figure S3: ¹ H-NMR (400 MHz, CDCl ₃) spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-	4
carboxylic acid methyl ester) (From $\delta_{\rm H}$ 6.0 ppm to $\delta_{\rm H}$ 8.0 ppm)	
Figure S4: ¹ H-NMR (400 MHz, CDCl ₃) spectrum of 1 (1,5-dihydroxy-3-methylxanthone-6-	5
carboxylic acid methyl ester) (From $\delta_{\rm H}$ 6.6 ppm to $\delta_{\rm H}$ 7.5 ppm)	
Figure S5: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-	6
6-carboxylic acid methyl ester)	
Figure S6: DEPT135 (150 MHz, CDCl ₃) spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-	7
6-carboxylic acid methyl ester)	
Figure S7: HSQC spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid	8
methyl ester)	
Figure S8: HSQC spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid	9
methyl ester) (From $\delta_{\rm C}20$ ppm to $\delta_{\rm C}$ 130 ppm)	
Figure S9: HMBC spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid	10
methyl ester)	
Figure S10: HMBC spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid	11
methyl ester) (From $\delta_{\rm C}$ 70 ppm to $\delta_{\rm C}$ 180 ppm)	
Figure S11: HMBC spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid	12
methyl ester) (From $\delta_{\rm C}$ 20 ppm to $\delta_{\rm C}$ 90 ppm)	
Figure S12: NOESY spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid	13
methyl ester)	
Figure S13: NMR comparison table for the new compound and similar structures from	14
Scifinder search	
S1. Scifinder search reports	15


Figure S1:HR-EIMS spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)


Figure S2: ¹H-NMR (400 MHz, CDCl₃) spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)

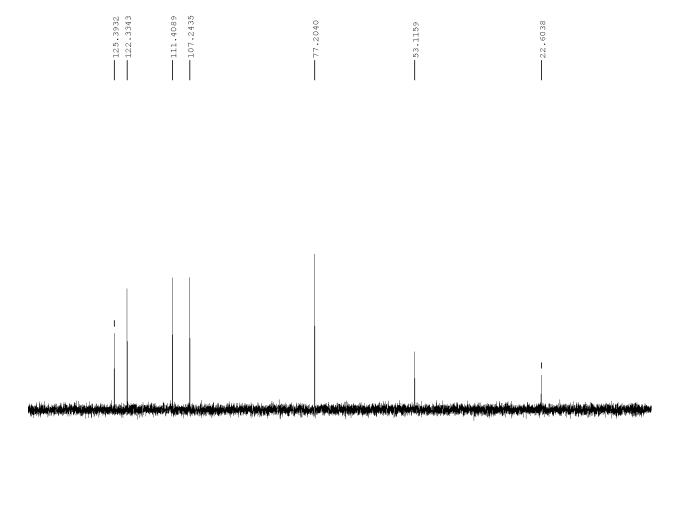

Figure S3: 1 H-NMR (400 MHz, CDCl₃) spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)(From δ_{H} 6.0 ppm to δ_{H} 8.0 ppm)

Figure S4: 1 H-NMR (400 MHz, CDCl₃) spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester) (From $\delta_{\rm H}$ 6.6 ppm to $\delta_{\rm H}$ 7.5 ppm)

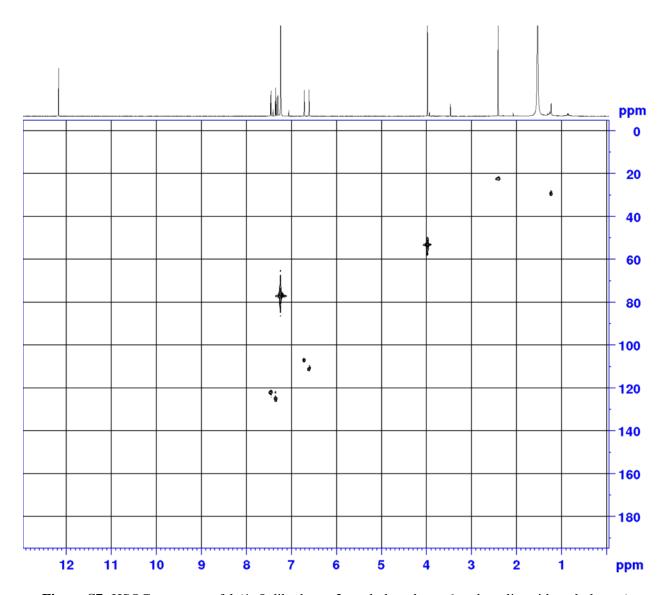


Figure S5: 13 C-NMR (150 MHz, CDCl₃) spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)

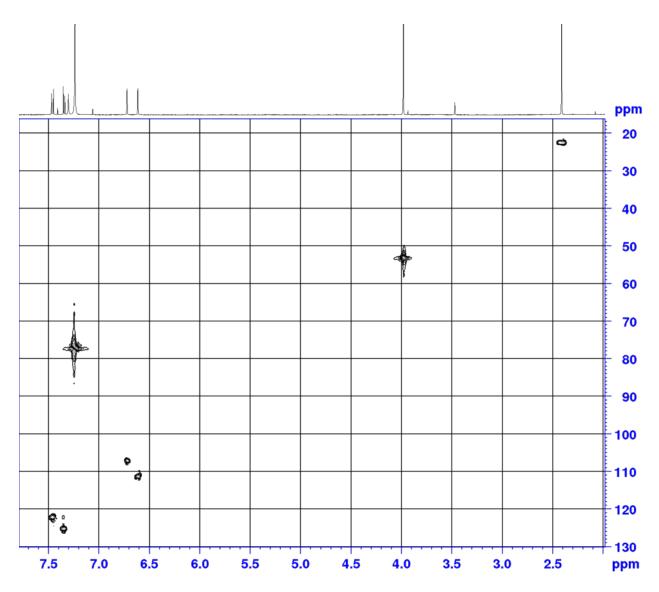
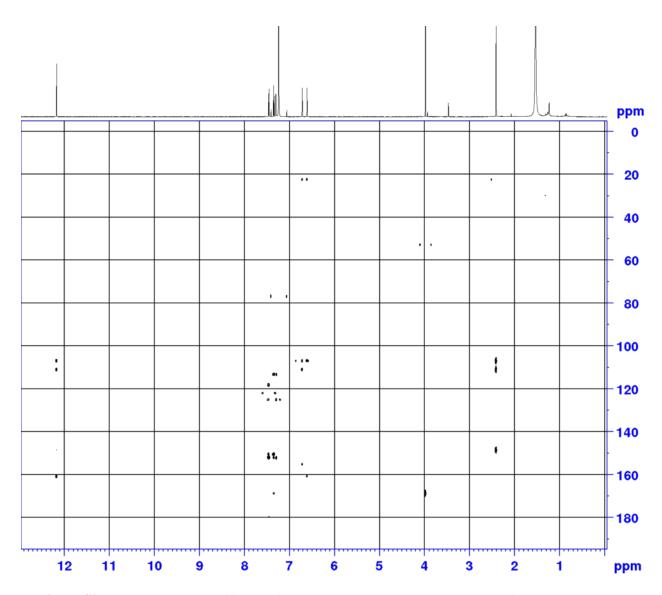
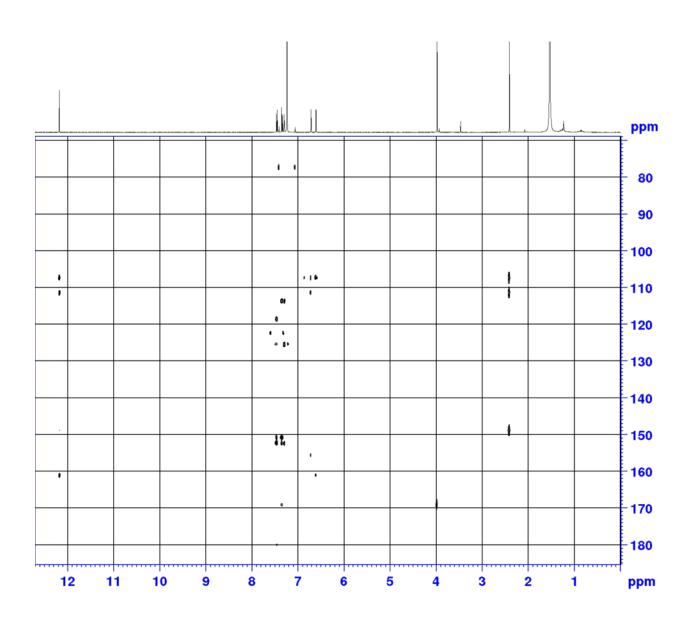


Figure S6: DEPT135 (150 MHz, CDCl₃) spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)


ppm


Figure S7: HSQC spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)

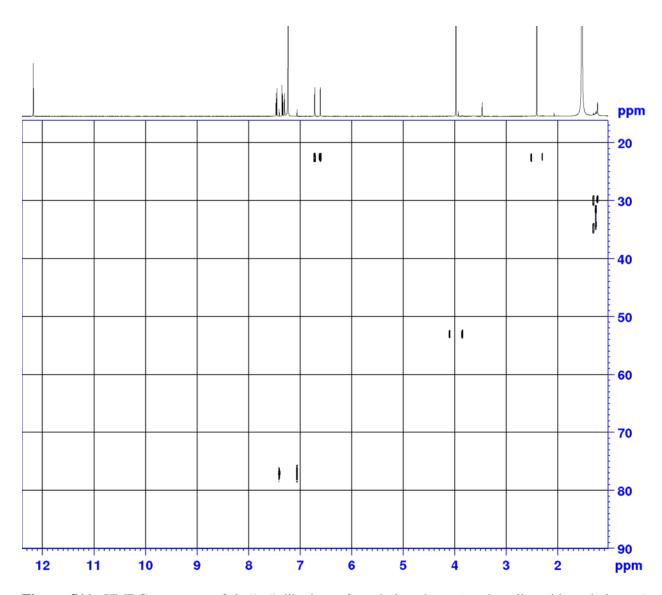
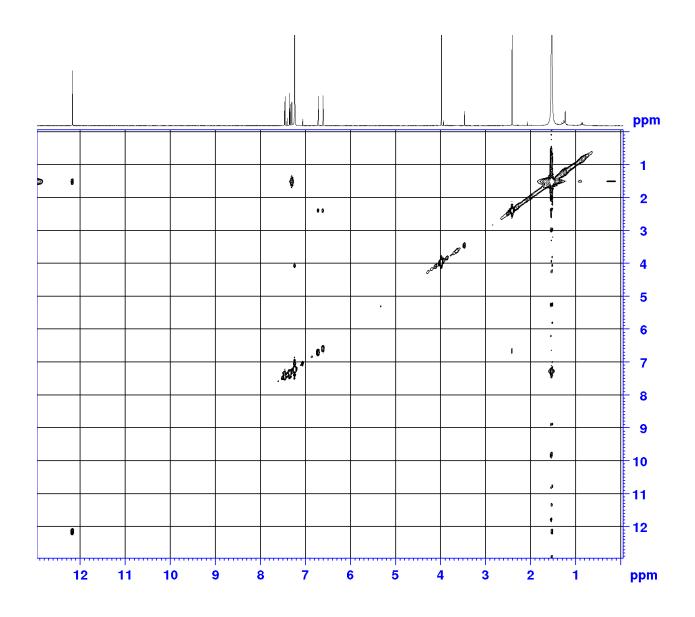

Figure S8: HSQC spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester) (From δ_C 20 ppm to δ_C 130 ppm)

Figure S9: HMBC spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)

Figure S10: HMBC spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester) (From $\delta_{\rm C}$ 70 ppm to $\delta_{\rm C}$ 180 ppm)

Figure S11: HMBC spectrum of **1** (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester) (From $\delta_{\rm C}$ 20 ppm to $\delta_{\rm C}$ 90 ppm)



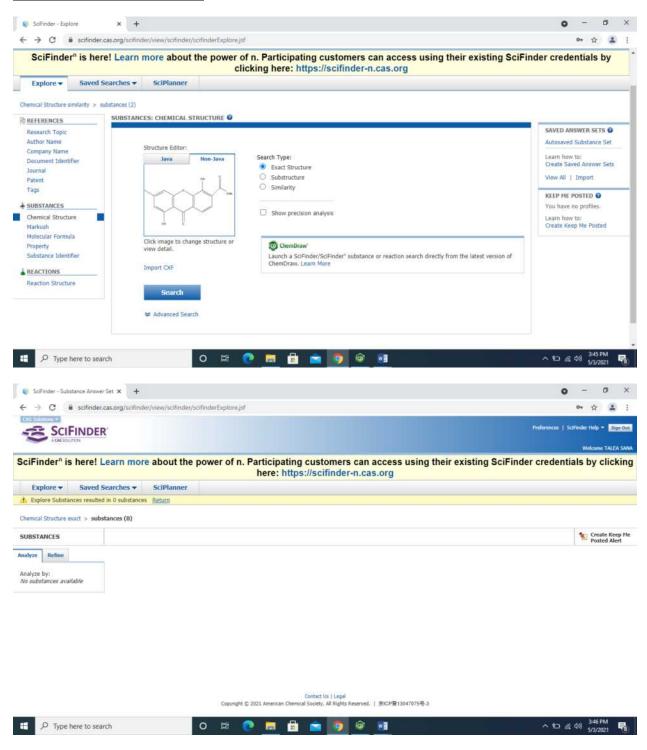
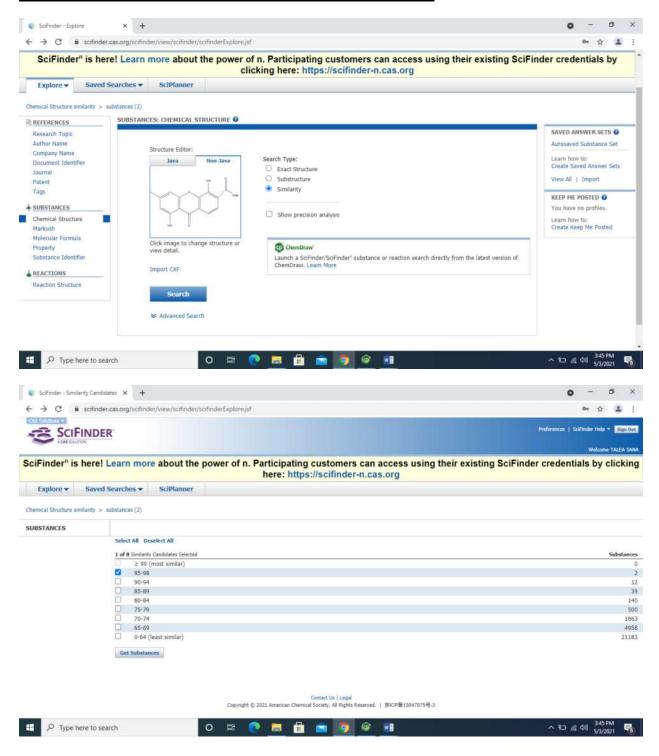
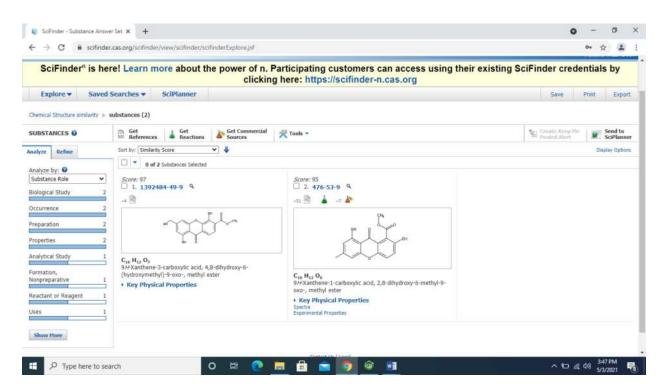

Figure S12: NOESY spectrum of 1 (1, 5-dihydroxy-3-methylxanthone-6-carboxylic acid methyl ester)

Table S1: NMR comparison for the new compound and similar structures from Scifinder search


¹ H-NMR (CDCl ₃ , 400 MHz);	¹ H-NMR (CDCl ₃ , 400 MHz) ;	¹ H-NMR (DMSO-d ₆ , 500 MHz) ;		
¹³ C-NMR (CDCl ₃ , 150 MHz)	¹³ C-NMR (CDCl ₃ , 100 MHz)	¹³ C-NMR (DMSO-d ₆ , 125 MHz)		
OH O OH	11 3 4 4 O 5 5 6 7 OH OH OH OH OH OH	HO $\frac{3}{2}$ $\frac{4}{11}$ $\frac{4}{9}$ $\frac{13}{8}$ $\frac{15}{8}$ $\frac{11}{7}$ $\frac{13}{6}$		


No	New compound		Pinselin		Fischexanthone	
	$egin{aligned} oldsymbol{\delta_H} & (\mathbf{mult.} \ oldsymbol{J} & \mathbf{in} & \mathbf{Hz}) \end{aligned}$	$oldsymbol{\delta}_C$	$egin{aligned} \delta_H (ext{mult.} \ J & ext{in Hz}) \end{aligned}$	$oldsymbol{\delta}_C$	$egin{aligned} \delta_H & (ext{mult.} \ J & ext{in Hz}) \end{aligned}$	$oldsymbol{\delta}_C$
1		161.1, C		155.7, C		160.6, C
1-OH	12.17, s		12.23, s		12.19, s	
1'		107.8, C		114.7, C		106.8, C
2	6.61,d (1.2)	111.4, CH	6.75 (s)	107.2, CH	6.72 (br s)	107.3, CH
3		148.8, C		151.9, C		154.3, C
4	6.72,d (1.2)	107.2, CH	6.64 (s)	111.3, CH	6.96 (br s)	104.2, CH
4'		155.6, C		161.2, C		155.8, C
5		150.8, C	7.45, d (9.0)	121.7, CH		150.9, C
5'		152.3, C		150.5, C		149.2, C
6		118.6, C	7.40, d (9.0)	125.4, CH		117.5, C
7	7.33,d (9.2)	125.4, CH		155.7, C	7.45, d (7.6)	125.5, CH
8	7.45,d (9.2)	122.3, CH		148.8, C	7.58, d (7.6)	120.3, CH
8'		113.6, C		118.5, C		117.3, C
9		180.1, C		180.3, C		180.6, C
11	2.41, s	22.6, CH ₃	2.45, s	22.6, CH_3	4.57, s	62.5, CH ₂ OH
12		169.1, C		168.9, C		167.1, C
13	3.98, s	53.1, OCH ₃	4.03, s	53.1, OCH ₃	3.85, s	52.4, OCH ₃

S1: Scifinder search reports

Scifinder search report as 95-98 % similarity search

Two compounds were found on search

1. 1392484-49-9 (Similarity *Score*: 97 %)

2. 476-53-9 (Similarity *Score*: 95 %)