Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

Anti-Inflammatory Components from the Fruits of

Amomum aromaticum

Nguyen Hai Dang¹, Le Nguyen Thanh^{2*}, Do Hoang Giang³ and

Nguyen Tien Dat³

¹University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam ²Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam ³Center for Research and Technology Transfer, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

Table of Contents	Page
Table S1: NMR spectral data of compound 1 and 2	2
Figure S1: ¹ H-NMR spectrum of the compound (1)	3
Figure S2 : The extension (1) of ¹ H-NMR spectrum of the compound (1)	3
Figure S3 : The extension (2) of ¹ H-NMR spectrum of the compound (1)	4
Figure S4 : ¹³ C-NMR spectrum of the compound (1)	4
Figure S5: HSQC spectrum of the compound (1)	5
Figure S6: COSY spectrum of the compound (1)	6
Figure S7 : The extended ¹ H- ¹ H COSY spectrum of the compound (1)	7
Figure S5: HMBC spectrum of the compound (1)	8
Figure S9: NOESY spectrum of the compound (1)	9
Figure S10: The extended NOESY spectrum of the compound (1)	10
Figure S11: HRESIMS spectrum of the compound (1)	11
Figure S12: HPLC chromatograms of standards (1) and (2) (upper) and Amomum	12
aromaticum ethanol extract (lower).	

Table S1: NMR spectral data of compound $1 \mbox{ and } 2$

С	1 (CDCl ₃)		2 (CDCl ₃)		
	$\delta_{C}{}^{a}$	$\delta_{\rm H}{}^{\rm b}({\rm m},J,{\rm Hz})$	$\delta_C{}^a$	$\delta_{\rm H}{}^{\rm b}$ (m, J, Hz)	
1	35.4	2.35 (1H, m, H-1)	37.5	2.95 (1H, m)	
2	145.2	-	144.8	-	
3	148.5	6.57 (1H, dd, <i>J</i> = 4.0 Hz, 2.0	146.7	6.63 (1H, ddd, 5.0, 3.0, 1.0)	
		Hz)			
4	32.6	2.72 (1H, ddd, <i>J</i> = 20.5, 4.0,	31.4	2.38 (1H,m, H-4α)	
		2.0 Hz, H-4α)		2.43 (1H, ddd, <i>J</i> = 20.5, 4.0, 2.0	
		2.43 (1H, ddd, <i>J</i> = 20.5, 4.0,		Hz, H-4 β)	
		2.0 Hz, H-4β)			
5	74.4	3.68 (1H, br d, J = 4.0 Hz)	68.6	4.02 (1H, ddd, 9.0, 5.0, 4.5)	
6	47.8	1.45 (1H, m, H-6)	43.0	2.41 (1H, m)	
7	24.2	1.58 (2H, m, H-7)	25.2	1.75 (1H, m, H-7α)	
				1.54 (1H, m, H-7β)	
8	22.3	1.73 (2H, m, H-8)	24.9	1.73 (2H, m, H-8)	
9	27.6	2.50 (1H, m, H-9α)	32.4	2.08 (1H, m, H-9α)	
		1.17 (ddd, <i>J</i> = 12.5, 10.0, 9.5		1.39 (1H, m, H-9β)	
		Hz, H-9β)			
10	193.7	9.41 (1H, s)	193.9	9.38 (1H, s)	
OMe	57.4	3.37 (3H, s)	-	-	

Figure S1: ¹H-NMR spectrum of the compound (1)

Figure S2: The extension (1) of ¹H-NMR spectrum of the compound (1) © 2021 ACG Publications. All rights reserved

Figure S3: The extension (2) of 1 H-NMR spectrum of the compound (1)

Figure S4: ¹³C-NMR spectrum of the compound (1)

© 2021 ACG Publications. All rights reserved

TQF6A-CDC13-HSQC

Figure S5: HSQC spectrum of the compound (1)

Figure S6: COSY spectrum of the compound (1)

Figure S7: The extended ¹H-¹H COSY spectrum of the compound (1)

Figure S8: HMBC spectrum of the compound (1)

Figure S9: NOESY spectrum of the compound (1)

Figure S10: The extended NOESY spectrum of the compound (1)

Figure S11: HRESIMS spectrum of the compound 1

Figure S12: HPLC chromatograms of reference compounds 1 and 2 (upper) and *Amomum aromaticum* ethanol extract (lower).

The dried and powdered fruits (1 g) were extracted with 5 mL ethanol by sonication for 5 minutes. The extract was the filtered and injected to an Agilent 1260 series HPLC-DAD system. A ZORBAX Eclipse XDB C18 column (150 mm x 4.6 mm, 5 μ m) was used. The elution was done with a gradient of 10-100% acetonitrile in water for 30 min. The detection wavelength was set at 230 nm for **1**.