Supporting Information

Rec. Nat. Prod. 16:1 (2022) 27-33

Diterpenoids from the Roots of Clerodendrum bungei

Dong-Xiang Wu¹, Jin-Hai Yu¹, Xiu-Qing Song¹, Yu-Zhen Ma²,

Peipei Shan^{3*} and Hua Zhang^{1*}

¹School of Biological Science and Technology, University of Jinan, Jinan 250022, China ²Department of Food and Drugs, Shandong Institute of Commerce & Technology, Jinan 250103, China

³Institute of Translational Medicine, the Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China

Table of Contents	Page
Table S1: Re-optimized conformers, energies and proportions for 1.	3
Figure S1: ¹ H NMR spectrum of 1 in CDCl ₃ .	4
Figure S2: ¹³ C and DEPT NMR spectra of 1 in CDCl ₃ .	4
Figure S3: ¹ H- ¹ H COSY spectrum of 1 in CDCl ₃ .	5
Figure S4: HSQC spectrum of 1 in CDCl ₃ .	5
Figure S5: HMBC spectrum of 1 in CDCl ₃ .	6
Figure S6: NOESY spectrum of 1 in CDCl ₃ .	б
Figure S7: (+)-HR-ESIMS spectrum of 1.	7
Figure S8: The UV spectrum of 1.	7
Figure S9: ¹ H NMR spectrum of 2 in CD ₃ OD.	8
Figure S10: ¹³ C NMR spectrum of 2 in CD ₃ OD	8
Figure S11: 1 H- 1 H COSY spectrum of 2 in CD ₃ OD.	9
Figure S12: HSQC spectrum of 2 in CD ₃ OD.	9
Figure S13: HMBC spectrum of 2 in CD ₃ OD.	10
Figure S14: NOESY spectrum of 2 in CD ₃ OD.	10
Figure S15: (+)-HR-ESIMS spectrum of 2.	11
Figure S16: The UV spectrum of 2.	11
Figure S17: ¹ H NMR spectrum of 2 in CDCl ₃ .	12
Figure S18: 13 C and DEPT NMR spectra of 2 in CDCl ₃ .	12
Figure S19: ¹ H NMR spectrum of 2a in CDCl ₃ .	13

Figure S20: 1 H NMR spectrum of 2b in CDCl ₃ .13Figure S21: 1 H NMR spectrum of 3 in CDCl ₃ .14Figure S22: 13 C and DEPT NMR spectra of 3 in CDCl ₃ .14Figure S23: 1 H- 1 H COSY spectrum of 3 in CDCl ₃ .15Figure S24: HSQC spectrum of 3 in CDCl ₃ .15Figure S24: HSQC spectrum of 3 in CDCl ₃ .15
Figure S21: ¹ H NMR spectrum of 3 in CDCl ₃ . 14 Figure S22: ¹³ C and DEPT NMR spectra of 3 in CDCl ₃ . 14 Figure S23: ¹ H- ¹ H COSY spectrum of 3 in CDCl ₃ . 15 Figure S24: HSQC spectrum of 3 in CDCl ₃ . 15 Figure S24: HSQC spectrum of 3 in CDCl ₃ . 15
Figure S22: ¹³ C and DEPT NMR spectra of 3 in CDCl ₃ .14Figure S23: ¹ H- ¹ H COSY spectrum of 3 in CDCl ₃ .15Figure S24: HSQC spectrum of 3 in CDCl ₃ .15
Figure S23: ${}^{1}H-{}^{1}H$ COSY spectrum of 3 in CDCl3.15Figure S24: HSQC spectrum of 3 in CDCl3.15
Figure S24: HSQC spectrum of 3 in CDCl3.15
Figure S25: HMBC spectrum of 3 in CDCl3.16
Figure S26: NOESY spectrum of 3 in CDCl3.16
Figure S27: Linear correlation between the experimental ¹³ C NMR data for 3 and the 17
calculated data for (Z)- Δ^{15} (left) and (E)- Δ^{15} (right) isomers, respectively.
Figure S28: SciFinder search report for compound 1.17
Figure S29: SciFinder search report for compound 2.18
Figure S30: 1H NMR spectrum of 4 in CDCl3.19
Figure S31: ¹³ C and DEPT NMR spectra of 4 in CDCl ₃ .19
Figure S32: ¹ H NMR spectrum of 5 in CDCl ₃ .20
Figure S33: ${}^{13}C$ and DEPT NMR spectra of 5 in CDCl ₃ .20
Figure S34: 1 H NMR spectrum of 6 in CD ₃ OD.21
Figure S35: 13 C and DEPT NMR spectra of 6 in CD ₃ OD.21
Figure S36: ¹ H NMR spectrum of 7 in CDCl ₃ .22
Figure S37: ¹³ C and DEPT NMR spectra of 7 in CDCl ₃ .22
Figure S38: 1H NMR spectrum of 8 in CDCl3.23
Figure S39: ${}^{13}C$ and DEPT NMR spectra of 8 in CDCl ₃ .23
Figure S40: 1 H NMR spectrum of 9 in CDCl3.24
Figure S41: ¹³ C and DEPT NMR spectra of 9 in CDCl ₃ .24
Figure S42: ¹ H NMR spectrum of 10 in CDCl ₃ .25
Figure S43: ${}^{13}C$ and DEPT NMR spectra of 10 in CDCl ₃ .25
Figure S44: ¹ H NMR spectrum of 11 in CDCl ₃ .26
Figure S45: ¹³ C and DEPT NMR spectra of 11 in CDCl ₃ .26
Figure S46: 1 H NMR spectrum of 12 in CDCl ₃ .27
Figure S47: 13 C and DEPT NMR spectra of 12 in CDCl ₃ .27
Figure S48: 1 H NMR spectrum of 13 in CDCl3.28
Figure S49: ¹³ C and DEPT NMR spectra of 13 in CDCl ₃ .28

No.	Conformer	Energy (hartree)	Energy (Kcal/mol)	Proportion (%)
1		-1151.8059374	-722769.743777874	52.57
2		-1151.8058152	-722769.667096152	46.18
3		-1151.8022875	-722767.453429125	1.10
4		-1151.7997953	-722765.889548703	0.08
5		-1151.7996883	-722765.822405133	0.07

 Table S1. Re-optimized conformers, energies and proportions for 1.

© 2021 ACG Publications. All rights reserved.

Figure S8: The UV spectrum of 1.

© 2021 ACG Publications. All rights reserved.

© 2021 ACG Publications. All rights reserved.

Figure S14: NOESY spectrum of 2 in CD₃OD.

© 2021 ACG Publications. All rights reserved.

Figure S16: The UV spectrum of 2.

Figure S18: ¹³C and DEPT NMR spectra of 2 in CDCl₃.

© 2021 ACG Publications. All rights reserved.

Figure S20: ¹H NMR spectrum of 2b in CDCl₃.

-13.73

Figure S22: ¹³C and DEPT NMR spectra of 3 in CDCl₃.

© 2021 ACG Publications. All rights reserved.

Figure S24: HSQC spectrum of 3 in CDCl₃.

Figure S26: NOESY spectrum of 3 in CDCl₃.

© 2021 ACG Publications. All rights reserved.

Figure S27: Linear correlation between the experimental ¹³C NMR data for **3** and the calculated data for (*Z*)- Δ^{15} (left) and (*E*)- Δ^{15} (right) isomers, respectively.

SCI A CAS SOL						Preferences Scifi	Welcome Wu donewiana
SciFind	er ⁿ is here! Learn	more about crede	he power of n. Pa ntials by clicking	rticipating custor here: https://scifi	mers can access usir inder-n.cas.org	ig their existing	SciFinder
Explore 🔻	Saved Searches 🔻	SciPlanner			-		
Chemical Structure s	similarity						
SUBSTANCES							
	Select All D	eselect All					
	6 of 9 Similar	ity Candidates Selected					Substances
	✓ ≥ 99	(most similar)					1
	✓ 95-98						1
	✓ 90-94 ✓ 85-89						4
	80-84						1
	✓ 75-79						6
	0 70-74						39
	0-64	(least similar)					1045
							Performan Salindar Help = <mark>Sign C</mark> Walkana Wu dangu
Deriver Devel Devel	SciFind	er ^a is here! Learn more abou	the power of n. Participating customer	s can access using their existing SciF	Finder credentials by clicking here: https://scifi	nder-n.cas.org	24 24 24
Chemical Structure similarity > substant	ness (14)						2018 FILL 800
	Cet Let Let Cet Commercial References	Toola *					Send to Posted Alext Schlass
Analyse Raine Sol	by: Smith States V +						Display Optic
Analyze by:	* 2 2 55 1 1185600-99-6 9			500± 96	a,		
Properties 9 -2 Coourrends 7 Preparation 6 Kees 1 Process 1 Shew Hare	8	OH S					
C ₂₂ 27 29	Currently and a H ₂₁ O ₃ My Phartertherone, 4,4e-dhydro-3,6,3-trihydroxy-7 (2-hydro Kay Physical Properties sometoli Propotos	able stareo shown, Double bond geometry unio y-1-propers 1-y()-1,2,4e-trimethyle, (4e.2)-	wn,Rotation (+),Absolute stareochemistry.	Cap Hop Os 1.9-Prenarthrendione. • Key Physical Propert	.4.4e-chydro-5.6.8-trhydroe-74(1.6)-2-hydroe-1-orosen-1-y(2-1.2.4e-trime rties	n/r, (442)-	
80 2	om 13 3. 2133002-93-2. % ∰			Store 17 O + 104730-66-7 vi R vi &	٩		
			DH DH georetry is pown.				
Ca: 9(4	e Hao Os Iarly-Phenanthrenone, 3,6,8-trihydroxy-7-((1,6)-2-hydroxy-1-pro Key Physical Properties	open-1-y()-1,2,4e-trimethy/-, (4a,8)-		Cap Haz Os 3,5 Menantmenedione, + Key Physical Propert	Absolute 1 , 4, 4e-clhy ctros, 6, 8-trihy ctroy, -7-((24)-2-hy ctroy, prop.()-1, 2, 4e-trimethyl+, (4e stress	tereochemistry. Sp	

Figure S28: SciFinder search report for compound 1.

CAS Solutions *	FINDER [®]		Preferences Soffrider Help + Sign 0 Welcome Wu durget	ang
SciFinder	is here! Learn	more about the	power of n. Participating customers can access using their existing SciFinder credentials by clicking here: https://scifinder-n.cas.org	J I
Explore 🕶	Saved Searches 🕶	SciPlanner		
Chemical Structure s	imilarity > substances (7)			
SUBSTANCES				
	Select All	Deselect All		
	3 of 8 Sim	larity Candidates Selected	Substan	Jes
	🗹 2 S	9 (most similar)		1
	95-	98		0
	90-	94		2
	2 85-	89		4
	U 80-	84		20
	0 75-	79		73
		/4		.39
	0 65-	oz 4 (leset similar)	2 44	27
	Get Sub	stances		

SciFinder [®] is	here! Learn more about the power of n. Participating customers can	access using their existing SciFinder credentials by clicking here: https://scifinder-n.cas.org			-
Explore + Saved Searches + SciPlanner			Save P	Print	Boot
Chemical Structure seminetry > substances (7)					
SUBSTANCES 0 Det References & Cet Sections & Cet Commercial References		N:	Create Keep He Yosted Alert	2 5	ni te iflanner
Analyse Rafee Sort by Smith Store V				Osple	/ Options
Arbingt by: Arbingt by: Arbingt by:					
Bological Rudy 6 Scote: 2 99		Score 92 D 2, 104730-66-7 %			
Courrence 4					_
Regrow C					
C ₃₃ H ₂₉ O ₃ 9034/27fementmenone, 4,4e-dhydro-6,8-dhydroxy-7(2-hydroxyoroo)(2-5- 9 Key Physical Properties	netboy-1,2,4e-trimethyl+, (4e,D-	Co N 220 1.5-Promotimentors, 4.5-dh/do-58.8cm/dou-14(28-2-h/dou-prov/1-12.4-timetry-, (48.5- 1.5cm/ms/scale/hopetics Institut			
2007-12 03.106005-37-2 4 -1		200-21 0 - 1 4431609-72-5 - 9, №			
<u>C.e. Mits On</u> 3.1 რომ ირთველი, 14 მირელის 2,3.5 რულიცი ჯეტურიციდიე ური რულის რულიზი	Contraction of the second seco	$C_{i_{1}} = C_{i_{1}} = C_{i$			

Figure S29: SciFinder search report for compound 2.

© 2021 ACG Publications. All rights reserved.

© 2021 ACG Publications. All rights reserved.

© 2021 ACG Publications. All rights reserved.

Figure S37: ¹³C and DEPT NMR spectra of 7 in CDCl₃.

© 2021 ACG Publications. All rights reserved.

-13.60

© 2021 ACG Publications. All rights reserved.

© 2021 ACG Publications. All rights reserved.

© 2021 ACG Publications. All rights reserved.

Figure S49:¹³C and DEPT NMR spectra of 13 in CDCl₃.