Supplementary Data

Rec. Nat. Prod. X:X (2021) XX-XX

A New Iridoid Glycoside Isolated from Valeriana officinalis L.

Guoqing Wu[#], Zilong Zhang[#], Hao Fan, Dongdong Zhang,

Wenli Huang, Huawei Zhang, Yuze Li* and Xiaomei Song*

School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China

*These authors contributed equally to this work

Table of Contents	Page
Figure S1: The IR spectrum of 1 (in KBr)	2
Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)	2
Figure S3: The ¹ H NMR spectrum of 1 (in MeOD)	3
Figure S4: The ¹³ C NMR spectrum of 1 (in MeOD)	4
Figure S5: The DEPT spectrum of 1 (in MeOD)	4
Figure S6: The HSQC spectrum of 1 (in MeOD)	5
Figure S7: The HSQC spectrum of 1 (in MeOD)(From $\delta_{\rm C}$ -10 ppm to $\delta_{\rm C}$ 160 ppm)	5
Figure S8: The HMBC spectrum of 1 (in MeOD)	6
Figure S9: The HMBC spectrum of 1 (in MeOD)(From δ_C 20 ppm to δ_C 120 ppm)	7
Figure S10: The HMBC spectrum of 1 (in MeOD)(From $\delta_{\rm C}$ 100 ppm to $\delta_{\rm C}$ 180 ppm)	8
Figure S11: The ¹ H- ¹ H COSY spectrum of 1 (in MeOD)	9
Figure S12: The NOESY spectrum of 1 (in MeOD)	10
S1:Search report of SciFinder of 1	11
Table 1: ¹³ C NMR data for compound 1 and similar compound	12
Figure S13: The ¹ H NMR spectrum of 2 (in MeOD)	13
Figure S14: The ¹³ C NMR spectrum of 2 (in MeOD)	13
Figure S15: The ¹ H NMR spectrum of 3 (in MeOD)	14
Figure S16: The ¹³ C NMR spectrum of 3 (in MeOD)	14
Figure S17: The ¹ H NMR spectrum of 4 (in MeOD)	15
Figure S18: The ¹³ C NMR spectrum of 4 (in MeOD)	15
Figure S19: The ¹ H NMR spectrum of 5 (in DMSO- d_6)	16
Figure S20: The ¹³ C NMR spectrum of 5 (in DMSO- <i>d</i> 6)	17
Figure S21: The ¹ H NMR spectrum of 6 (in MeOD)	18
Figure S22: The ¹³ C NMR spectrum of 6 (in MeOD)	19
S2:Spectroscopic Data of 2-6	20

Figure S1: The IR spectrum of 1 (in KBr)

Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)

Figure S3: The ¹H NMR spectrum of 1 (in MeOD)

Figure S4: The ¹³C NMR spectrum of 1 (in MeOD)

Figure S5: The DEPT spectrum of 1 (in MeOD)

Figure S7: The HSQC spectrum of **1** (in MeOD) (From $\delta_{\rm C}$ 90 ppm to $\delta_{\rm C}$ 160 ppm)

Figure S8: The HMBC spectrum of 1 (in MeOD)

Figure S9: The HMBC spectrum of **1** (in MeOD) (From $\delta_{\rm C}$ 20ppm to $\delta_{\rm C}$ 120 ppm)

Figure S10: The HMBC spectrum of 1 (in MeOD) (From $\delta_{\rm C}$ 125ppm to $\delta_{\rm C}$ 200 ppm

Figure S11: The ¹H-¹H COSY spectrum of 1 (in MeOD)

Figure S12: The NOESY spectrum of 1 (in MeOD)

			rences Sufinder Help + Sign
Explore - Sa	ed Searches - SciPlanner		Walcome Yuansian
emical Structure sendants			
REFERENCES Research Topic Juthor Name Company Name Occurrent Lidentifier Journal Substances Chemical Structure Narkab Nalocular Formula Nopoly Nopoly Displatence Settinge REACTIONS Reaction Structure	SUBSTANCES CHIMICAL STRUCTURE @ Southine Editor: Southine Editor: Chick mapping to change structure or chick mapping to change structure or chick mapping to Chick application import C7: (This replacedor) Source to	th Type: Exact Structure Similarly These previous analysis Conclusion: Conclus	SAVED ARSWER SETS Autosaved Maference Se Learn how te: Creat Search discuss Se View All 1 Import REFERENCE OF View All on a profile. Learn how te: Create Keep Ma Posted
	Mar Advanced Search		
Explore V Sar enical Structure similarity	W Advanced Search DER Ved Searches Ved Searches Ved Statusser	bude	vences Schlinder Holp = 1000 Welcome Yaanstang
Explore Samuelaria	W Advanced Search	n da	ences i Scillader Help = 💽

	R			Proferences ScPinder Help + Sign O Wekome Yuurasung G
Explore - Saved	Searches - SciPlanner			Save Pret Expt
Chemical Structure similarity > 1	substances (1)			
SUBSTANCES O	Get & Get References	Get Commercial Sources	😤 Tools +	Triste Komp Pie Send to Postel Alert SciPlan
nalyze Refine	Sort by: Smilarty Score	- +		Display Optio
Indyze by: Substance Role Substance Role Substance Role Substance Role Substance Role Show Hore	• • • • • • • • • • • • • • • • •	os Con		
	C 16 H28 OB P-O-Clastopyranoside, (1.5,2,5,5,4)- (hydroxymethyl)etheny()-2-methyl • Key Physical Properties Spectra	- hydraxy-S-[1- yyclohexyl		激活 Windows

S1: Search report of SciFinder of **1**

	1	3	similar compound
Position	$\delta_{ m C}$	$\delta_{ m C}$	$\delta_{ m C}$
1	60.4	61.0	70.4
2	-	-	84.1
3	67.1	67.5	33.9
4	150.2	150.6	34.4
5	41.3	41.5	27.6
6	36.3	38.9	35.3
7	78.2	81.0	28.3
8	89.8	83.5	156.1
9	54.1	51.3	107.0
10	19.8	23.5	64.8
11	112.3	112.4	-
1'	99.2		106.3
2'	75.2		75.7
3'	77.7		78.7
4'	71.8		71.7
5'	78.5		78.3
6'	62.9		62.9

 Table 1: ¹³C NMR data for compound 1 and similar compound

Figure S16: The ¹³C NMR spectrum of 3 (in MeOD)

Figure S18: The ¹³C NMR spectrum of 4 (in MeOD)

Figure S19: The ¹H NMR spectrum of 5 (in DMSO-*d*₆)

Figure S20: The 13 C NMR spectrum of 5 (in DMSO- d_6)

Figure S21: The ¹H NMR spectrum of 6 (in MeOD)

Figure S22: The ¹H NMR spectrum of 6 (in MeOD)

S2: Spectroscopic Data of 2-6

Dioscoridin A (2):, C₁₀H₁₈O₄, colorless oil, $\left[\alpha\right]_D^{27} = +8.0$ (c 0.1, MeOH), HR-ESI-MS *m/z* 225.1095 ([M+Na]⁺). ¹H-NMR (400 MHz, MeOD) $\delta_{\rm H}$: 5.17 (1H, s, H-11a), 4.87 (1H, s, H-11b), 3.46 (1H, dd, *J* = 10.6, 6.1 Hz, H-1a), 3.21 (1H, dd, *J* = 10.6, 8.2 Hz, H-1b), 4.06 (2H, dd, *J* = 14.0, 8.6 Hz, H-3), 3.07 (1H, m, H-5), 1.92 (1H, dd, *J* = 13.0, 4.0 Hz, H-6a), 1.72 (1H, dd, *J* = 13.0, 6.1 Hz, H-6b), 4.36 (1H, t, *J* = 4.6 Hz, H-7), 1.97 (1H, m, H-8), 2.09 (1H, m, H-9), 3.79 (1H, dd, *J* = 10.6, 6.9 Hz, H-10a), 3.67 (1H, dd, *J* = 10.6, 6.7 Hz, H-10b). ¹³C-NMR (100 MHz, MeOD) $\delta_{\rm C}$: 64.5 (C-1), 67.1 (C-3), 149.9 (C-4), 41.9 (C-5), 40.1 (C-6), 73.5 (C-7), 52.6 (C-8), 45.0 (C-9), 63.4 (C-10), 110.1 (C-11).

Jatamanin J (**3**): C₁₀H₁₈O₄, yellow oil, $\left[\alpha\right]_D^{20}$ +87.0 (c 0.36, MeOH), HR-ESI-MS *m/z* 225.1102 ([M+Na]⁺). ¹H-NMR (400 MHz, MeOD) $\delta_{\rm H}$: 3.66 (1H, dd, *J* = 11.1, 6.3 Hz, H-1a), 3.58 (1H, dd, *J* = 11.1, 7.4 Hz, H-1b), 4.02 (2H, s, H-3), 3.06 (1H, dd, *J* = 10.4, 7.9 Hz, H-5), 2.19 (1H, ddd, *J* = 13.2, 9.6, 4.8 Hz, H-6a), 1.72 (1H, ddd, *J* = 13.2, 7.9, 1.8 Hz, H-6b), 3.80 (1H, dd, *J* = 5.2, 1.8 Hz, H-7), 2.19 (1H, ddd, *J* = 10.2, 7.2, 6.0 Hz, H-9), 1.34 (3H, s, H-10), 5.23 (1H, s, H-11a), 5.03 (1H, s, H-11b). ¹³C-NMR (100 MHz, MeOD) $\delta_{\rm C}$: 61.0 (C-1), 67.5 (C-3), 150.6 (C-4), 41.5 (C-5), 38.9 (C-6), 81.0 (C-7), 83.5 (C-8), 51.3 (C-9), 23.5 (C-10), 112.4 (C-11).

Longiflorone (4): C₁₀H₁₆O₅, yellow oil, $\left[\alpha\right]_{p}^{20}$ +61.9 (c 1.1, MeOH), DCI-MS m/z 234.1

([M+NH₃+H]⁺). ¹H-NMR (400 MHz, MeOD) δ_{H} : 4.54 (1H, dd, J = 10.9, 2.9 Hz, H-3a), 4.19 (1H, dd, J = 10.9, 5.7 Hz, H-3b), 1.76 (1H, m, H-4), 2.52 (1H, m, H-5), 2.05 (1H, ddd, J = 13.4, 9.4, 4.0 Hz, H-6a), 1.93 (1H, dd, J = 13.4, 8.3 Hz, H-6b), 3.71 (1H, d, J = 3.9 Hz, H-7), 2.86 (1H, d, J = 10.9 Hz, H-9), 1.49 (3H, s, H-10), 3.59 (1H, dd, J = 11.2, 5.4 Hz, H-11a), 3.45 (1H, dd, J = 11.2, 8.4 Hz, H-11b). ¹³C-NMR (100 MHz, MeOD) δ_{C} : 175.4 (C-1), 69.2 (C-3), 42.4 (C-4), 36.2 (C-5), 38.9 (C-6), 80.8 (C-7), 85.4 (C-8), 50.6 (C-9), 22.3 (C-10), 62.7 (C-11).

Apigenin-8-O- β -D-glucopyranoside (5): C₂₂H₂₃O₁₀, colorless oil, $\left[\alpha\right]_{p}^{20}$ -115.8 (c 0.41,

MeOH), HR-FAB-MS *m*/*z* 447.1285 ([M+H]⁺). ¹H-NMR (400 MHz, MeOD) $\delta_{\rm H}$: 6.87 (1H, s, H-3), 7.96 (1H, d, *J* = 8.4 Hz, H-6), 7.96 (1H, d, *J* = 8.4 Hz, H-8), 6.93 (1H, d, *J* = 2.1 Hz, H-2'), 6.94 (1H, d, *J* = 7.3 Hz, H-5'), 6.94 (1H, dd, *J* = 7.3, 2.1 Hz, H-6'), 5.08 (1H, d, *J* = 7.5 Hz, H-1"), 4.64 (1H, m, H-2"), 3.75 (1H, m, H-3"), 3.49 (1H, m, H-4"), 3.49 (1H, m, H-5"), 3.24 (2H, m, H-6"), 2.06 (3H, s, Me-3'). ¹³C-NMR (100 MHz, MeOD) $\delta_{\rm C}$: 162.6 (C-2), 106.2 (C-3), 184.2 (C-4), 159.1 (C-5), 104.3 (C-6), 94.5 (C-7), 165.3 (C-8), 162.1 (C-9), 110.1 (C-10), 129.8 (C-1'), 117.3 (C-2'), 129.8 (C-3'), 156.2 (C-4'), 117.3 (C-5'), 122.4 (C-6'), 101.4 (C-1"), 77.8 (C-2"), 74.5 (C-3"), 70.8 (C-4"), 78.5 (C-5"), 61.9 (C-6"), 8.8 (3'-CH₃).

Isosakuranetin-5-O-rutinoside (6): C₂₈H₃₄O₁₄, white needles, $\left[\alpha\right]_{D}^{20}$ -105.3 (c 0.16, MeOH),

FAB-MS *m*/*z* 594.2 ([M]⁺). ¹H-NMR (400 MHz, MeOD) δ_{H} : 7.43 (2H, d, *J* = 8.7 Hz, H-2', 6'), 6.96 (2H, d, *J* = 8.8 Hz, H-3', 5'), 6.20 (1H, d, *J* = 2.2 Hz, H-6), 6.18 (1H, d, *J* = 2.2 Hz, H-8), 5.57 (1H, dd, *J* = 11.9, 2.9 Hz, H-2), 4.96 (1H, d, *J* = 7.5 Hz, H-1"), 4.51 (1H, brs, H-1"), 3.80 (3H, s, 4'-OCH₃), 1.19 (3H, m, H-6"). ¹³C-NMR (100 MHz, MeOD) δ_{C} : 78.9 (C-2), 48.5 (C-3), 197.0 (C-4), 163.6 (C-5), 96.6 (C-6), 165.5 (C-7), 95.7 (C-8), 163.1 (C-9), 103.6 (C-10), 130.7 (C-1'), 127.6 (C-2'), 113.6 (C-3'), 160.1 (C-4'), 113.7 (C-5'), 127.7 (C-6'), 100.7 (C-1"), 73.2 (C-2"), 75.8 (C-3"), 69.9 (C-4"), 76.4 (C-5"), 66.0 (C-6"), 99.7 (C-1"'), 70.9 (C-2"'), 70.7 (C-3"''), 72.7 (C-4"''), 68.4 (C-5"''), 16.5 (C-6"''), 54.4 (4'-OCH₃).