Supporting Information

Org.Commun. 15:1 (2022) 71-80

Potassium ferrocyanide promoted an efficient synthesis of benzoxazoles and benzothiazoles under solvent free condition

Vishal S. Patil^{1*}, Dhanshri V. Patil² and Sachin S. Potdar ³

¹ Department of Chemistry, Sanjeevan Engineering and Technology Institute, Panhala, Kolhapur, Maharashtra, India, 416201

² Department of Chemistry, Krishna Mahavidyalaya, Rethare Bk. Karad, Maharashtra, India, 415108

³ Department of Physics, Sanjeevan Engineering and Technology Institute, Panhala, Kolhapur, Maharashtra, India, 416201

Table of Contents	Page
Figure S1: ¹ H-NMR (300 MHz, CDCl ₃), Spectrum of Compound (a)	2
Figure S2: ¹³ C-NMR (75 MHz, CDCl ₃), Spectrum of Compound (a)	2
Figure S3: ¹ H-NMR (300 MHz, CDCl ₃), Spectrum of Compound (e)	3
Figure S4: ¹³ C-NMR (75 MHz, CDCl ₃), Spectrum of Compound (e)	3
Figure S5: ¹ H-NMR (300 MHz, CDCl ₃), Spectrum of Compound (g)	4
Figure S6: ¹³ C-NMR (75 MHz, CDCl ₃), Spectrum of Compound (g)	4
Figure S7: ¹ H-NMR (300 MHz, CDCl ₃), Spectrum of Compound (I)	5
Figure S8: ¹³ C-NMR (75 MHz, CDCl ₃), Spectrum of Compound (I)	5
Figure S9: ¹ H-NMR (300 MHz, CDCl ₃), Spectrum of Compound (o)	6
Figure S10: ¹³ C-NMR (75 MHz, CDCl ₃), Spectrum of Compound (o)	6
Figure S11: ¹ H-NMR (300 MHz, CDCl ₃), Spectrum of Compound (r)	7
Figure S12: ¹³ C-NMR (75 MHz, CDCl ₃), Spectrum of Compound (r)	7
Figure S13: ¹ H-NMR (300 MHz, CDCl ₃), Spectrum of Compound (t)	8
Figure S14: ¹³ C-NMR (75 MHz, CDCl ₃), Spectrum of Compound (t)	8

Figure S2: ¹³C-NMR (75 MHz, CDCl₃), Spectrum of Compound (a)

Figure S3: ¹H-NMR (300 MHz, CDCl₃), Spectrum of Compound (e)

Figure S4: ¹³C-NMR (75 MHz, CDCl₃), Spectrum of Compound (e)

© 2022 ACG Publications. All rights reserved.

Figure S6: ¹³C-NMR (75 MHz, CDCl₃), Spectrum of Compound (g)

Figure S7: ¹H-NMR (300 MHz, CDCl₃), Spectrum of Compound (I)

Figure S8: ¹³C-NMR (75 MHz, CDCl₃), Spectrum of Compound (I)

Figure S10: ¹³C-NMR (75 MHz, CDCl₃), Spectrum of Compound (0)

© 2022 ACG Publications. All rights reserved.

Figure S11: ¹H-NMR (300 MHz, CDCl₃), Spectrum of Compound (r)

Figure S12: ¹³C-NMR (75 MHz, CDCl₃), Spectrum of Compound (r)

Figure 13: ¹H-NMR (300 MHz, CDCl₃), Spectrum of Compound (t)

