## **Supporting Information**

## Rec. Nat. Prod. 16:5 (2022) 483-487

# Sesquiterpenoids and Diterpenoids from the Flowers of *Nicotiana tabacum* L. and Their Antifungal Activity

## Kuo Xu<sup>1</sup>, Jiao Wang<sup>1</sup>, Jing Liu<sup>1</sup>, Lin Ni<sup>3</sup>, Yong-Mei Du<sup>1\*</sup> and Xiao-Yi Wei<sup>2\*</sup>

 <sup>1</sup> Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
<sup>2</sup> Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
<sup>3</sup> Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China

| Table of Contents                                                                         | Pages |
|-------------------------------------------------------------------------------------------|-------|
| <b>Figure S1:</b> The <sup>1</sup> H NMR spectrum in DMSO- $d_6$ (600 MHz) of <b>1</b>    | 3     |
| Figure S2: The <sup>13</sup> C NMR spectrum in DMSO- $d_6$ (150 MHz) of 1                 | 3     |
| Figure S3: The <sup>1</sup> H- <sup>1</sup> HCOSY spectrum in DMSO- $d_6$ (600 MHz) of 1  | 4     |
| Figure S4: The HSQC spectrum in DMSO- $d_6$ (600 MHz) of 1                                | 4     |
| Figure S5: The HMBC spectrum in DMSO- $d_6$ (600 MHz) of 1                                | 5     |
| Figure S6: The NOE spectrum in DMSO- $d_6$ (600 MHz) of 1                                 | 5     |
| Figure S7: The HR-ESI-MS data of 1                                                        | 6     |
| Figure S8: The <sup>1</sup> H NMR spectrum in DMSO- $d_6$ (600 MHz) of 2                  | 6     |
| Figure S9: The <sup>13</sup> C NMR spectrum in DMSO- $d_6$ (150 MHz) of 2                 | 7     |
| Figure S10: The <sup>1</sup> H- <sup>1</sup> HCOSY spectrum in DMSO- $d_6$ (600 MHz) of 2 | 7     |
| Figure S11: The HSQC spectrum in DMSO- $d_6$ (600 MHz) of 2                               | 8     |
| Figure S12 : The HMBC spectrum in DMSO- $d_6$ (600 MHz) of 2                              | 8     |
| Figure S13: The HR-ESI-MS data of 2                                                       | 9     |
| Figure S14: The <sup>1</sup> H NMR spectrum in CD <sub>3</sub> Cl (600 MHz) of 3          | 9     |
| Figure S15: The <sup>13</sup> C NMR spectrum in CD <sub>3</sub> Cl (150 MHz) of 3         | 10    |
| Figure S16: The HR-ESI-MS data of 3                                                       | 10    |
| Figure S17: The <sup>1</sup> H NMR spectrum in CD <sub>3</sub> Cl (600 MHz) of 4          | 11    |
| Figure S18: The <sup>13</sup> C NMR spectrum in CD <sub>3</sub> Cl (150 MHz) of 4         | 11    |
| Figure S19: The HR-ESI-MS data of 4                                                       | 12    |
| Figure S20: The <sup>1</sup> H NMR spectrum in DMSO- $d_6$ (600 MHz) of 5                 | 12    |
| Figure S21: The ${}^{13}$ C NMR spectrum in DMSO- $d_6$ (150 MHz) of 5                    | 13    |
| Figure S22: The HR-ESI-MS data of 5                                                       | 14    |

| Figure S23: The <sup>1</sup> H NMR spectrum in DMSO- $d_6$ (600 MHz) of 6                                                                                   | 14 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Figure S24: The <sup>13</sup> C NMR spectrum in DMSO- $d_6$ (150 MHz) of 6                                                                                  | 15 |  |  |  |  |  |
| Figure S25: The HR-ESI-MS data of 6                                                                                                                         |    |  |  |  |  |  |
| Figure S26: The <sup>1</sup> H NMR spectrum in CD <sub>3</sub> Cl (600 MHz) of 7                                                                            | 16 |  |  |  |  |  |
| Figure S27: The <sup>13</sup> C NMR spectrum in CD <sub>3</sub> Cl (150 MHz) of 7                                                                           | 16 |  |  |  |  |  |
| Figure S28: The <sup>1</sup> H NMR spectrum in CD <sub>3</sub> Cl (600 MHz) of 8                                                                            | 17 |  |  |  |  |  |
| Figure S29: The <sup>13</sup> C NMR spectrum in CD <sub>3</sub> Cl (150 MHz) of 8                                                                           | 17 |  |  |  |  |  |
| Figure S30: The <sup>1</sup> H NMR spectrum in CD <sub>3</sub> Cl (600 MHz) of 9                                                                            | 18 |  |  |  |  |  |
| Figure S31: The <sup>13</sup> C NMR spectrum in CD <sub>3</sub> Cl (150 MHz) of 9                                                                           | 19 |  |  |  |  |  |
| S1. Antifungal activity assay                                                                                                                               |    |  |  |  |  |  |
| <b>Table S1:</b> <sup>1</sup> H and <sup>13</sup> C NMR spectroscopic data (400 MHz, ppm in CDCl) of three known structures similar to those of $1$ and $2$ | 21 |  |  |  |  |  |

#### References

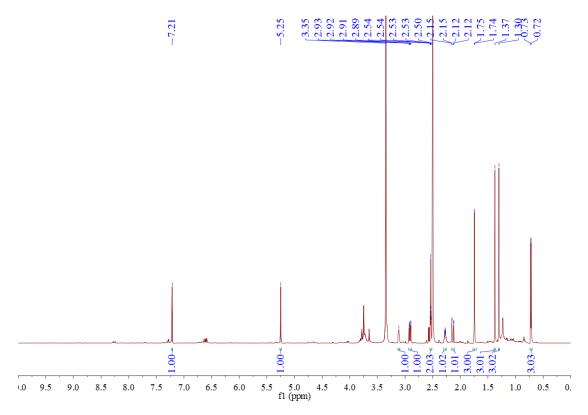
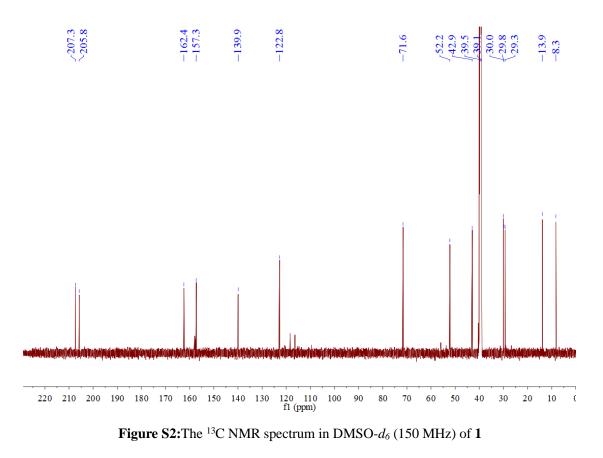
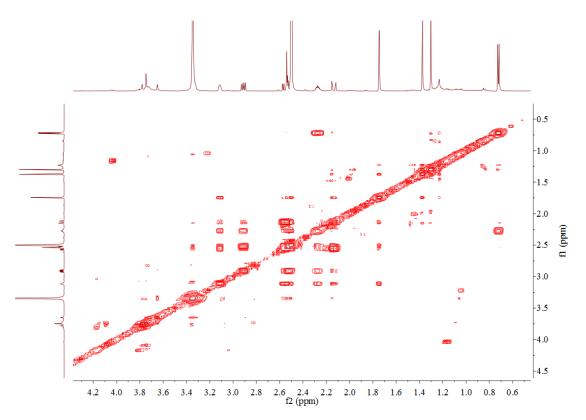





Figure S1: The <sup>1</sup>H NMR spectrum in DMSO- $d_6$  (600 MHz) of 1



@ 2021 ACG Publications. All rights reserved.



**Figure S3:** The  $^{1}$ H- $^{1}$ HCOSY spectrum in DMSO- $d_{6}$  (600 MHz) of **1** 

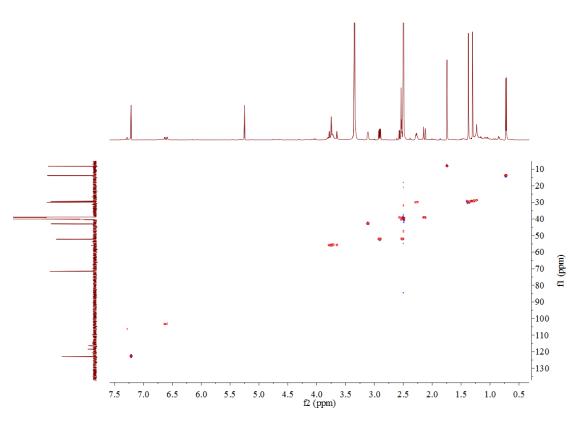



Figure S4:The HSQC spectrum in DMSO- $d_6$  (600 MHz) of 1

© 2021 ACG Publications. All rights reserved.

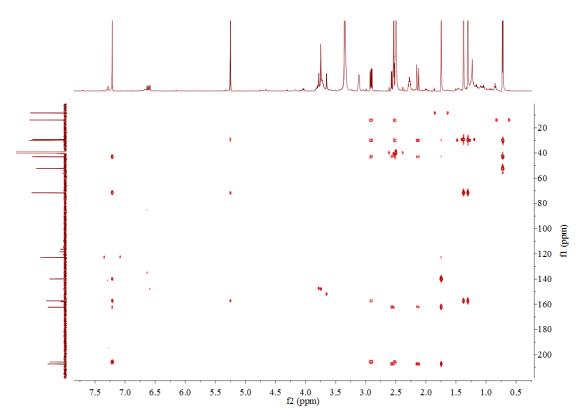



Figure S5: The HMBC spectrum in DMSO- $d_6$  (600 MHz) of 1

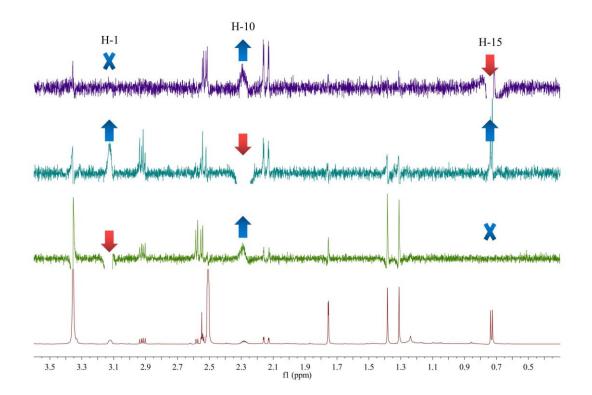
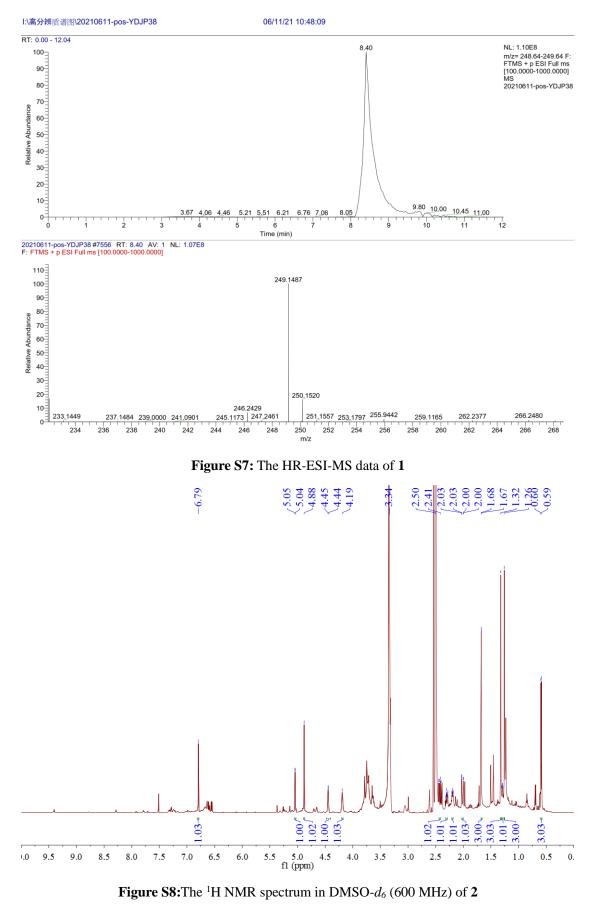
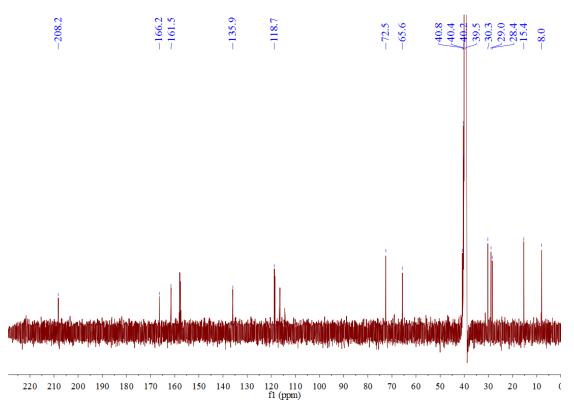
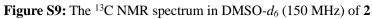






Figure S6: The NOE spectrum in DMSO-*d*<sub>6</sub> (600 MHz) of 1



© 2021 ACG Publications. All rights reserved.





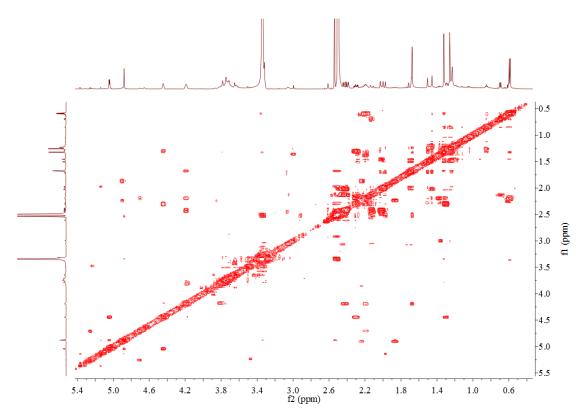



Figure S10: The <sup>1</sup>H-<sup>1</sup>HCOSY spectrum in DMSO- $d_6$  (600 MHz) of 2

 $\ensuremath{\textcircled{O}}$  2021 ACG Publications. All rights reserved.

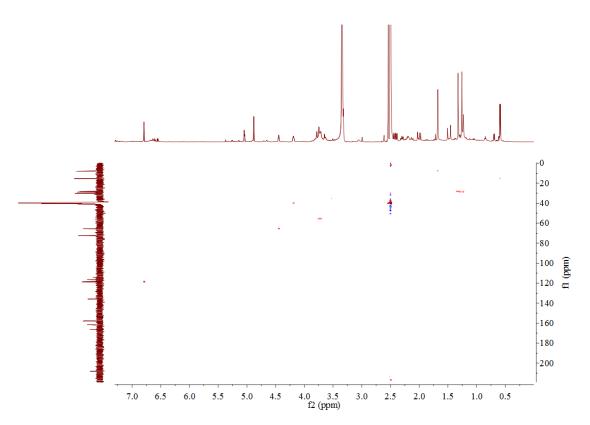



Figure S11: The HSQC spectrum in DMSO- $d_6$  (600 MHz) of 2

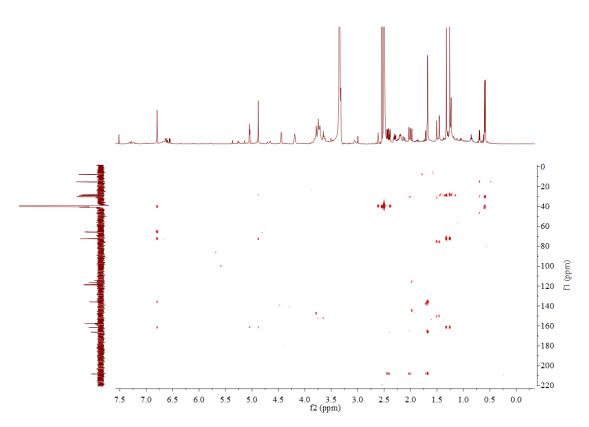
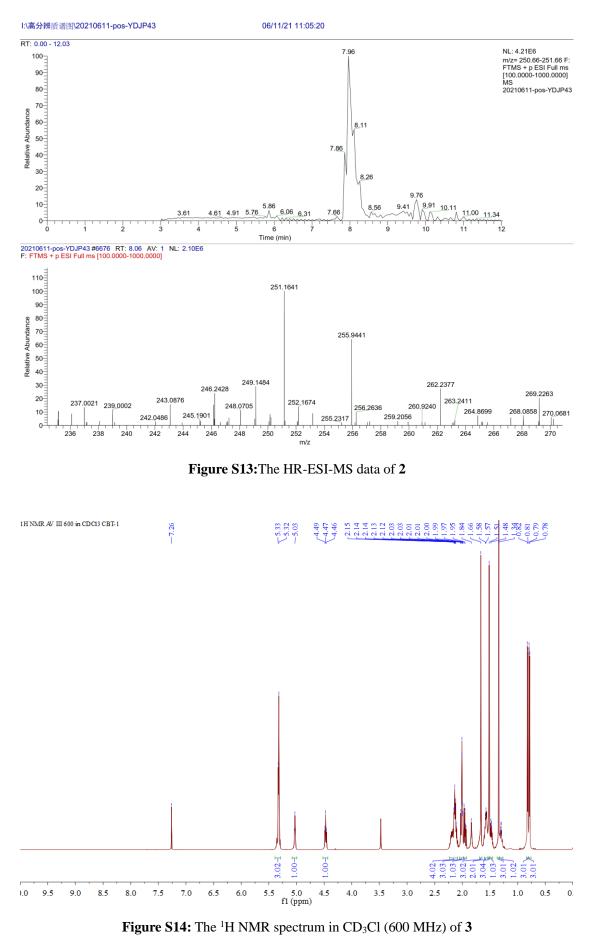




Figure S12: The HMBC spectrum in DMSO- $d_6$  (600 MHz) of 2

© 2021 ACG Publications. All rights reserved.



© 2021 ACG Publications. All rights reserved.




Figure S15: The <sup>13</sup>C NMR spectrum in CD<sub>3</sub>Cl (150 MHz) of 3

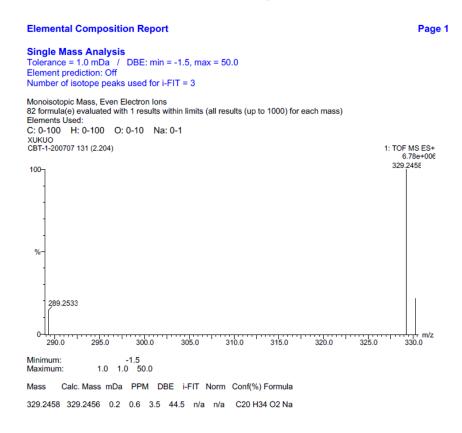



Figure S16: The HR-ESI-MS data of 3

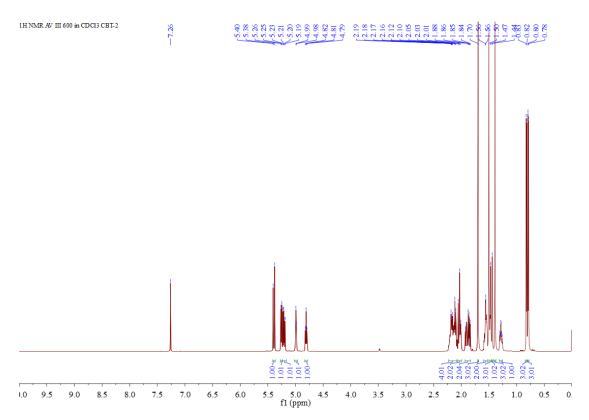
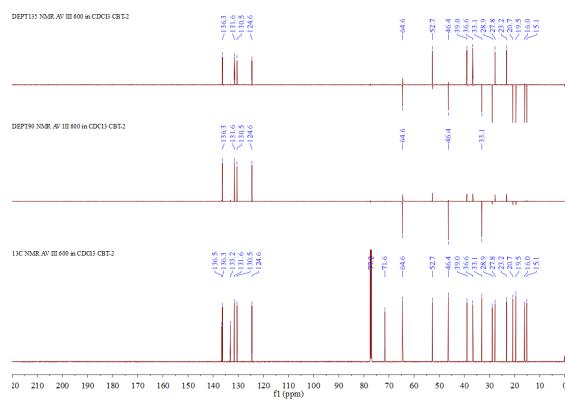
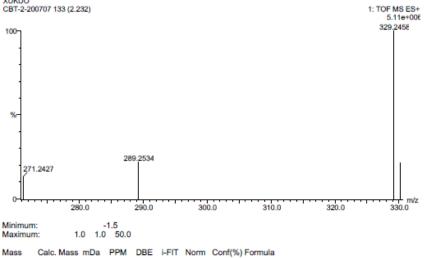



Figure S17: The <sup>1</sup>H NMR spectrum in CD<sub>3</sub>Cl (600 MHz) of 4





Figure S18: The <sup>13</sup>C NMR spectrum in CD<sub>3</sub>Cl (150 MHz) of 4

© 2021 ACG Publications. All rights reserved.

#### **Elemental Composition Report**

Single Mass Analysis Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 82 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-100 O: 0-10 Na: 0-1 XUKU0 CBT-2-200707 133 (2.232)



329.2458 329.2456 0.2 0.6 3.5 43.7 n/a n/a C20 H34 O2 Na

Figure S19: The HR-ESI-MS data of 4

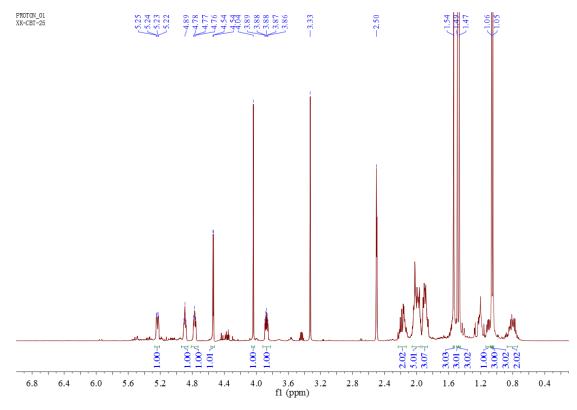



Figure S20: The <sup>1</sup>H NMR spectrum in DMSO- $d_6$  (600 MHz) of 5

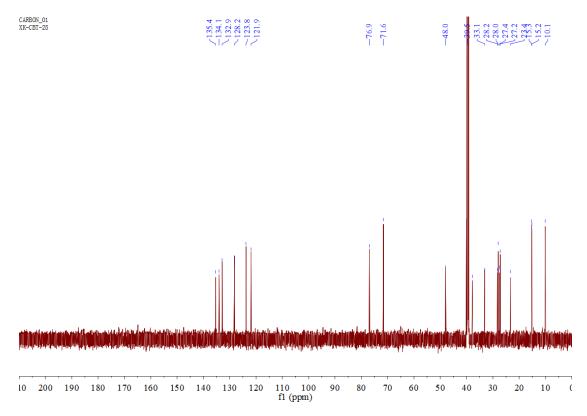
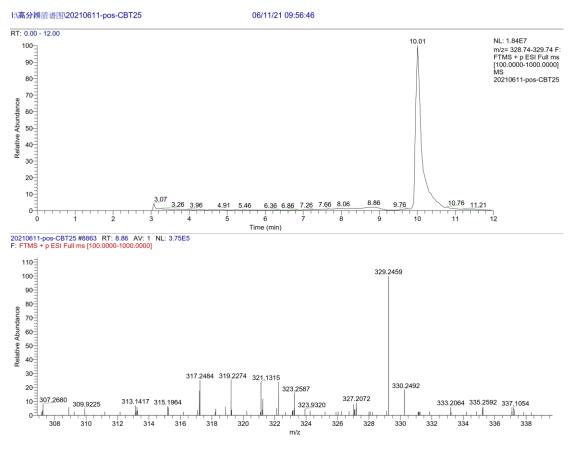
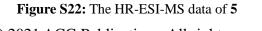





Figure S21: The  ${}^{13}$ C NMR spectrum in DMSO- $d_6$  (150 MHz) of 5





© 2021 ACG Publications. All rights reserved.

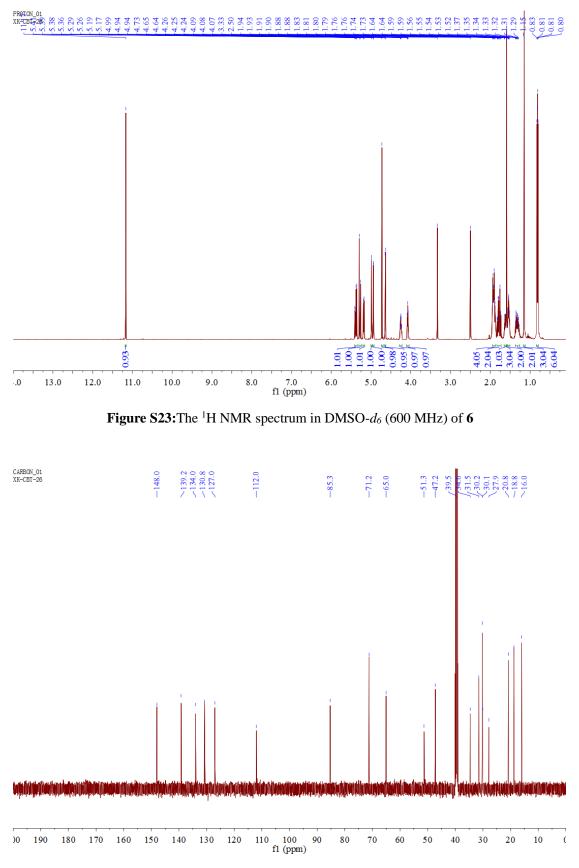
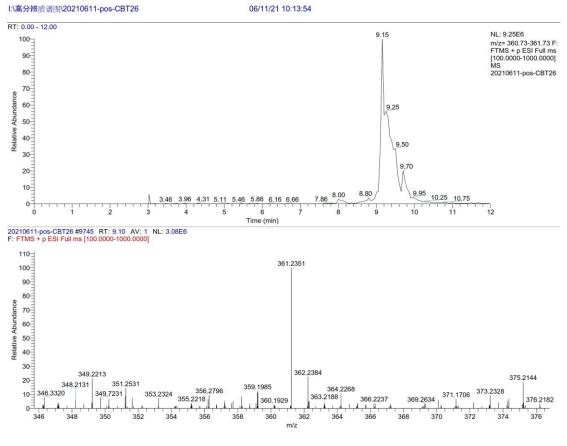




Figure S24: The <sup>13</sup>C NMR spectrum in DMSO- $d_6$  (150 MHz) of 6





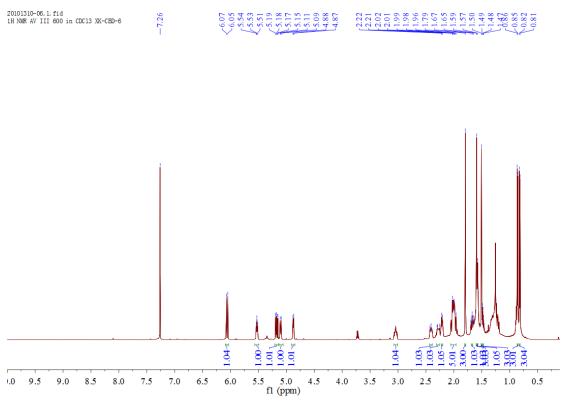



Figure S26: The <sup>1</sup>H NMR spectrum in CD<sub>3</sub>Cl (600 MHz) of 7 © 2021 ACG Publications. All rights reserved.

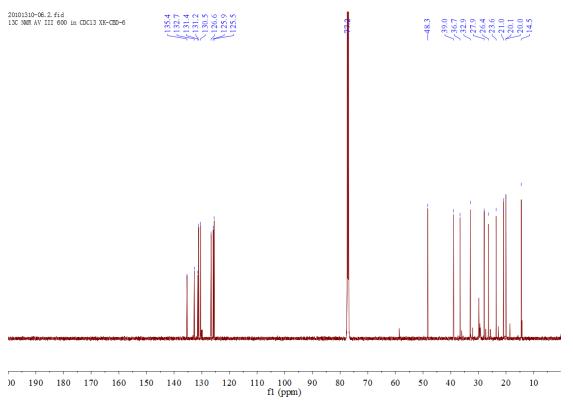



Figure S27: The <sup>13</sup>C NMR spectrum in CD<sub>3</sub>Cl (150 MHz) of 7

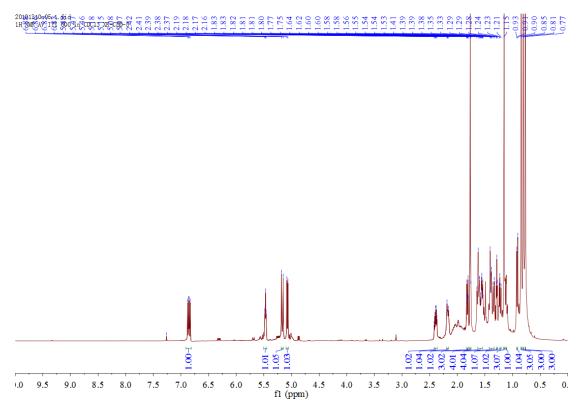



Figure S28: The <sup>1</sup>H NMR spectrum in CD<sub>3</sub>Cl (600 MHz) of 8

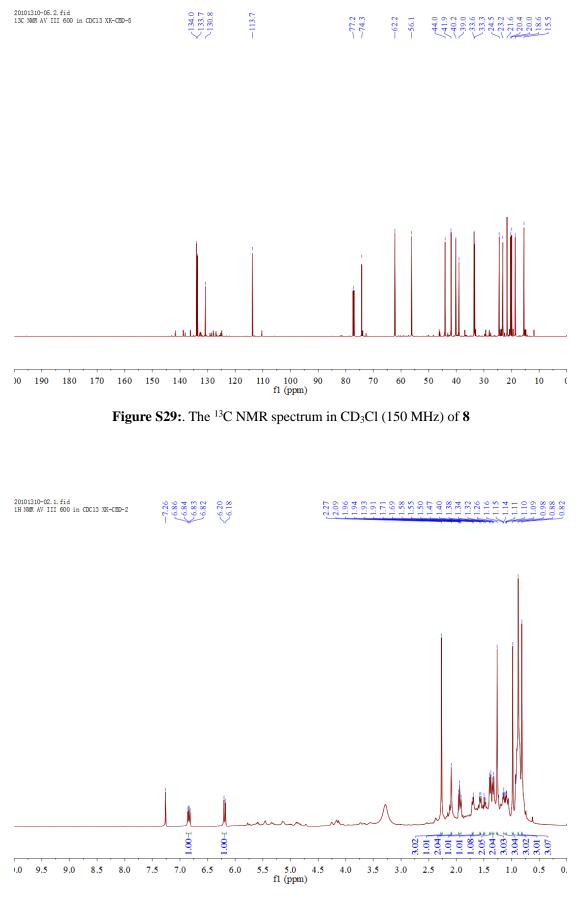



Figure S30: The <sup>1</sup>H NMR spectrum in CD<sub>3</sub>Cl (600 MHz) of 9

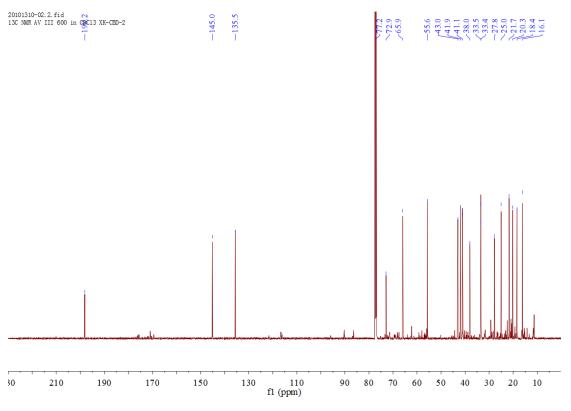



Figure S31: The <sup>13</sup>C NMR spectrum in CD<sub>3</sub>Cl (150 MHz) of 9

### S1. Antifungal Activity Assay

The antifungal activity against three phytopathogenic fungi (Valsa mali var. mali, Alternaria porri, and Botrytis cinerea) were tested using a modified method previously described in the literature [1-2]. All plant pathogens were purchased from Qingdao Agricultural University (Qingdao, China). The isolated compounds were separately dissolved in 95% ethanol at a concentration of 1 mg/mL. After steam sterilization, culture dishes (90 mm) filled with liquid PDA (potato dextrose agar) medium were immediately added to 1 mL of the aforementioned solution and mixed thoroughly; these samples constituted the experimental group (EG). The final concentration of each compound was 10 µg/mL (the dilution ratio was 1:100). PDA medium containing 1 mL of 95% ethanol was used as the control group (CG). After the medium was naturally cooled and solidified, the fungal strains cultured in another PDA culture dish ( $\varphi = 9$  mm) were inoculated into the center of each dish and repeated three times. The treated fungus was fermented under static conditions at 25 °C for 7 days. The final growth inhibition ratio of the samples was calculated by the cross patch method using the formula  $[(\phi CG-9 \text{ mm}) - (\phi EG-9 \text{ mm})]/(\phi CG-9 \text{ mm})$ mm) ×100%. α-CBT-diol, which is a characteristic antifungal constituent of tobacco, was used as the positive control [3].

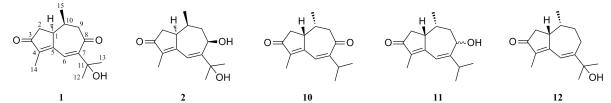



Table S1: <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data (400 MHz, ppm in CDCl) of three known similar structures [4] to compounds 1 and 2.

| Position | Compound 1                                      |                       | Compound 2                                      |                       | Compound 10                        |                      | Compound 11                        |                             | Compound 12                        |                                         |
|----------|-------------------------------------------------|-----------------------|-------------------------------------------------|-----------------------|------------------------------------|----------------------|------------------------------------|-----------------------------|------------------------------------|-----------------------------------------|
|          | $\delta_{\rm H} \left( J \text{ in Hz} \right)$ | $\delta_{\rm C}$ (m)  | $\delta_{\rm H} \left( J \text{ in Hz} \right)$ | $\delta_{\rm C}$ (m)  | $\delta_{\rm H} (J \text{ in Hz})$ | $\delta_{\rm C}$ (m) | $\delta_{\rm H} (J \text{ in Hz})$ | $\delta_{\rm C}  ({\rm m})$ | $\delta_{\rm H} (J \text{ in Hz})$ | $\delta_{\rm C} \left( {\rm m} \right)$ |
| 1        | 3.11, brs                                       | 42.9, CH              | 4.19, brs                                       | 40.2, CH              | 2.57-2.63, m                       | 47.3                 | 2.50-2.60, m                       | 49.0                        | 2.58-2.72 (m)                      | 47.0                                    |
| 2a       | 2.54,<br>overlap                                | 39.1, CH <sub>2</sub> | 2.42, dd (7.1,<br>18.6)                         | 40.4, CH <sub>2</sub> | 2.68, dd (6.8,<br>18.0)            | 41.9                 | 2.65, dd<br>(6.0,18.4)             | 41.4                        | 2.57 (dd, 6.5,<br>18.0)            | 42.5                                    |
| 2b       | 2.13, dd                                        |                       | 2.01, dd (2.0,                                  |                       | 2.26, dd (2.0,                     |                      | 2.19, dd (2.4,                     |                             | 2.12 (dd, 1.4,                     |                                         |
|          | (2.1, 18.8)                                     |                       | 18.6)                                           |                       | 18.0)                              |                      | 18.4)                              |                             | 17.8)                              |                                         |
| 3        |                                                 | 207.3, C              |                                                 | 208.2, C              |                                    | 208.0                |                                    | 204.5                       |                                    | 206.4                                   |
| 4        |                                                 | 139.9, C              |                                                 | 135.9, C              |                                    | 139.5                |                                    | 135.7                       |                                    | 135.9                                   |
| 5        |                                                 | 162.4, C              |                                                 | 166.2, C              |                                    | 164.0                |                                    | 169.6                       |                                    | 168.3                                   |
| 6        | 7.21, s                                         | 122.8, CH             | 6.79, s                                         | 118.7, CH             | 6.89, br.s                         | 126.7                | 6.38, br.s                         | 118.4                       | 6.40 (br.s)                        | 123.0                                   |
| 7        |                                                 | 157.3, C              |                                                 | 161.5, C              |                                    | 155.3                |                                    | 161.9                       |                                    | 157.8                                   |
| 8a       |                                                 | 205.8, C              | 4.44, d (3.0)                                   | 65.6, CH              |                                    | 204.3                | 4.50, dd (1.2,<br>7.6)             | 67.9                        | 2.19 (dd, 8.5,<br>17.0)            | 26.5                                    |
| 8b       |                                                 |                       |                                                 |                       |                                    |                      |                                    |                             | 2.45 (dd, 7.4,<br>17.5)            |                                         |
| 9a       | 2.91, dd<br>(7.5, 13.1)                         | 52.2, CH <sub>2</sub> | 2.30, m                                         | 40.8, CH <sub>2</sub> | 2.93, dd (4.8,<br>12.0)            | 51.6                 | 2.10 (ddd,<br>4.0,7.6,14.0)        | 44.3                        | 1.80-1.90 (m)                      | 35.6                                    |
| 9b       | 2.54,<br>overlap                                |                       | 1.29, overlap                                   |                       | 2.44, dd (4.0,<br>12.0)            |                      | 1.75 (ddd,<br>1.6,8.4,14.0)        |                             | 1.50-1.70 (m)                      |                                         |
| 10       | 2.27, m                                         | 30.0, CH              | 2.19, m                                         | 30.3, CH              | 1.82-1.85, m                       | 36.6                 | 1.88-1.92 (m)                      | 33.3                        | 1.50-1.70 (m)                      | 39.2                                    |
| 11       |                                                 | 71.6, C               |                                                 | 72.5, C               | 3.00,<br>br.hept(6.9)              | 31.4                 | 2.77 (br.hept,<br>6.8)             | 34.7                        | 2.58-2.72 (m)                      | 47.4                                    |
| 12       | 1.37, s                                         | 29.8, CH <sub>3</sub> | 1.26, s                                         | 29.0, CH <sub>3</sub> | 1.15, d (7.2)                      | 21.3                 | 1.16 (d, 6.8)                      | 21.2                        | 3.59-3.70 (m)                      | 66.1                                    |
| 13       | 1.30, s                                         | 29.3, CH <sub>3</sub> | 1.32, s                                         | 28.4, CH <sub>3</sub> | 1.70, d (6.8)                      | 21.5                 | 1.19 (d, 6.8)                      | 21.3                        | 1.08 (d, 6.6)                      | 16.0                                    |
| 14       | 1.75, d (1.7)                                   | 8.3, CH <sub>3</sub>  | 1.68, d (1.6)                                   | 8.0, CH <sub>3</sub>  | 1.88, d (1.6)                      | 8.62                 | 1.72 (d, 1.6)                      | 6.7                         | 1.77 (br.s)                        | 8.6                                     |
| 15       | 0.72, d (7.0)                                   | 13.9, CH <sub>3</sub> | 0.59, d (7.0)                                   | 15.4, CH <sub>3</sub> | 1.19, d (6.4)                      | 22.1                 | 1.12 (d, 6.4)                      | 20.9                        | 1.04 (d, 6.5)                      | 22.3                                    |
| 11-OH    | 5.25, s                                         | , <u>-</u>            | 4.88, s                                         | , ,                   | · 、 /                              |                      |                                    |                             |                                    |                                         |
| 8-OH     | *                                               |                       | 5.04, d (4.2)                                   |                       |                                    |                      |                                    |                             |                                    |                                         |

#### References

- S. Duan, Y. Du, X. Hou, N.Yan, W.Dong, X.Mao and Z. Zhang (2016). Chemical basis of the fungicidal activity of tobacco extracts against *Valsa mali*, *Molecules* 21,1743.
- [2] S. Duan, Y. Du, X. Hou, S.Li, X. Ren, W.Dong, W.Zhao, Z. Zhang (2015). Inhibitory effects of tobacco extracts on eleven phytopathogenic fungi, *Nat. Prod. Res. Dev.* 27 470–474-480. (in Chinese)
- [3] N. Yan, Y. Du, X. Liu, H. Zhang, Y. Liu, J. Shi, S.J. Xue and Z. Zhang (2017). Analyses of effects of a-cembratrien-diol on cell morphology and transcriptome of *Valsa mali var. mali*, *Food Chem.* 214, 110–118.
- [4] S. Michalet, L. Payen-Fattaccioli, C. Beney, P. Cegiela, C. Bayet, G. Cartier, D. Noungoue-Tchamo, E. Tsamo, A.M. Mariotte and M. G. Dijoux-Franca (2008). New components including cyclopeptides from Barks of *Christiana africana* DC. (Tiliaceae).. *Helv. Chim Acta* **91**(6), 1106-1117.