Supporting Information

Rec. Nat. Prod. 16:5 (2022) 493-498

Secondary Metabolites from *Thraustochytrium* and their Biological Activity

Huu Giap Tran¹, Mai Thao Vu¹, Thi Tu Oanh Nguyen¹, Thi Thoa Ha¹, Dang Diem Hong², Thi Hoai Thu Ngo², Thi Thom Le², Cam Ha Nguyen² and Thi Minh Hang Nguyen^{1,3*}

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

²Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

³Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

Table of Contents	Page
Figure S1: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1 (ergosterol)	3
Figure S2: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 1 (ergosterol)	4
Figure S3: DEPT 90&135 spectrum of 1 (ergosterol)	4
Figure S4: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 2 (7-dehydroporiferasterol)	5
Figure S5: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 2 (7-dehydroporiferasterol)	6
Figure S6: DEPT 90&135 spectrum of 2 (7-dehydroporiferasterol)	6
Figure S7: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 3 (($22E$, $24R$)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)	7
Figure S8: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 3 ((22 <i>E</i> ,24 <i>R</i>)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)	8
Figure S9: DEPT 90&135 spectrum of 3 ((22 <i>E</i> ,24 <i>R</i>)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)	8
Figure S10: HSQC spectrum of 3 ((22 <i>E</i> ,24 <i>R</i>)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)	9
Figure S11: HMBC spectrum of 3 ((22 <i>E</i> ,24 <i>R</i>)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)	9
Figure S12: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) spectrum of 4 (poriferasterol glucoside)	10
Figure S13: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) spectrum of 4 (poriferasterol glucoside)	11
Figure S14: DEPT 90&135 spectrum of 4 (poriferasterol glucoside)	11
Figure S15: HSQC spectrum of 4 (poriferasterol glucoside)	12
Figure S16: HMBC spectrum of 4 (poriferasterol glucoside)	12

Figure S17: NOESY spectrum of 4 (poriferasterol glucoside)	13
Figure S18: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) spectrum of 5 (perlolyrine)	14
Figure S19: ¹³ C-NMR (125 MHz, DMSO- d_6) spectrum of 5 (periolyrine)	14
Figure S20: HSQC spectrum of 5 (perlolyrine)	15
Figure S21: HMBC spectrum of 5 (perlolyrine)	15
Figure S22: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 6 (pyrrolezanthine-6-methyl ether)	16
Figure S23: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 6 (pyrrolezanthine-6-methyl ether)	16
Figure S24: HSQC spectrum of 6 (pyrrolezanthine-6-methyl ether)	17
Figure S25: HMBC spectrum of 6 (pyrrolezanthine-6-methyl ether)	17
Figure S26: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 7 (3-(3-aminopropyl)-6-[(4-	18
hydroxyphenyl)methyl]-2,5-piperazinedione)	
Figure S27: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of spectrum of 7 (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione)	19
Figure S28: COSY (¹ H- ¹ H) spectrum of 7 (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione)	19
Figure S29: HSQC spectrum of 7 (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione)	20
Figure S30: HMBC spectrum of 7 (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione)	20
Figure S31: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) spectrum of 8 (5-methyluracil)	21
Figure S32: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) spectrum of 8 (5-methyluracil)	21
Figure S33: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) spectrum of 9 (1 <i>H</i> -indole-3-carboxylic acid)	22
Figure S34: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) spectrum of 9 (1 <i>H</i> -indole-3-carboxylic acid)	22
Figure S35: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) spectrum of 10 (adenosine)	23
Figure S36: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) spectrum of 10 (adenosine)	23
Figure S37: DEPT 90&135 spectrum of 10 (adenosine)	24
Figure S38: ¹ H-NMR (500 MHz, CDCl ₃ +CD ₃ OD) spectrum of 11 (<i>p</i> -hydroxybenzoic acid)	24
Figure S39: ¹³ C-NMR (125 MHz, CDCl ₃ +CD ₃ OD) spectrum of 11 (<i>p</i> -hydroxybenzoic acid)	25

Compound 1 (ergosterol) :

¹H NMR (600 MHz, CDCl₃) δ ppm: 0.63 (3H, s, H₃-19), 0.82 (3H, d, *J* = 6.6 Hz, H₃-27), 0.84 (3H, d, *J* = 6.6 Hz, H₃-26), 0.91 (3H, d, *J* = 6.6 Hz, H₃-28), 0.94 (3H, s, H₃-18), 1.04 (3H, d, *J* = 6.6 Hz, H₃-21), 3.63 (1H, m, H-3), 5.17 (1H, dd, *J* = 7.8, 15.3 Hz, H-22), 5.23 (1H, dd, *J* = 7.2, 15.3 Hz, H-23), 5.38 (1H, dd, *J* = 5.4, 3.0 Hz, H-7), 5.57 (1H, dd, *J* = 6.0, 2.4 Hz, H-6).

¹³C NMR (150 MHz, CDCl₃) δ ppm: 38.4 (C-1), 32.0 (C-2), 70.4 (C-3), 40.8 (C-4), 139.8 (C-5), 119.6 (C-6), 116.3 (C-7), 141.3 (C-8), 46.2 (C-9), 37.0 (C-10), 21.1 (C-11), 39.1 (C-12), 42.9 (C-13), 54.5 (C-14), 23.0 (C-15), 28.3 (C-16), 55.7 (C-17), 12.1 (C-18), 16.0 (C-19), 40.4 (C-20), 21.1 (C-21), 135.5 (C-22), 132.0 (C-23), 42.8 (C-24), 33.1 (C-25), 19.9 (C-26), 19.6 (C-27), 17.6 (C-28). [F. Matteo, T. Pasquale, L. Rafael (2010). Phytosterol from *Dunaliella tertiolecta* and *Dunaliella salina*: A potentially novel industrial application, *Bioresour. Technol.* **101**, 4144-4150.]

Figure S1: ¹H-NMR (500 MHz, CDCl₃) spectrum of 1 (ergosterol)

Figure S3: DEPT 90&135 spectrum of 1 (ergosterol)

Compound 2 (7-dehydroporiferasterol)

¹H NMR (500 MHz, CDCl₃) δ ppm: 0.63 (3H, s, H₃-19), 0.79 (3H, d, J = 6.5 Hz, H₃-27), 0.82 (3H, t, J = 7.5 Hz, H₃-29), 0.84 (3H, d, J = 6.5 Hz, H₃-26), 0.94 (3H, s, H₃-18), 1.04 (3H, d, J = 6.6 Hz, H-21), 3.63 (1H, m, H-3), 5.17 (1H, dd, J = 7.5, 15.0 Hz, H-22), 5.23 (1H, dd, J = 7.5, 15.0 Hz, H-23), 5.38 (1H, dd, J = 5.5, 2.5 Hz, H-7), 5.57 (1H, dd, J = 5.0, 2.0 Hz, H-6). ¹³C NMR (125 MHz, CDCl₃) δ ppm: 38.4 (C-1), 32.0 (C-2), 70.4 (C-3), 40.8 (C-4), 139.8 (C-5), 119.6 (C-6), 116.3 (C-7), 141.3 (C-8), 46.2 (C-9), 37.0 (C-10), 21.1 (C-11), 39.1 (C-12), 42.8 (C-13), 54.6 (C-14), 23.0 (C-15), 28.3 (C-16), 55.7 (C-17), 12.1 (C-18), 16.3 (C-19), 40.7 (C-20), 21.3 (C-21), 138.0 (C-22), 129.6 (C-23), 51.2 (C-24), 31.8 (C-25), 18.9 (C-26), 20.9 (C-27), 25.3 (C-28), 12.4 (C-29). [F. Matteo, T. Pasquale, L. Rafael (2010). Phytosterol from *Dunaliella tertiolecta* and *Dunaliella salina*: A potentially novel industrial application, *Bioresour. Technol.* **101**, 4144-4150.]

Figure S4: ¹H-NMR (500 MHz, CDCl₃) spectrum of 2 (7-dehydroporiferasterol)

Figure S5: ¹³C-NMR (125 MHz, CDCl₃) spectrum of 2 (7-dehydroporiferasterol)

Figure S6: DEPT 90&135 spectrum of 2 (7-dehydroporiferasterol)

Compound **3** ((22*E*,24*R*)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)

¹H NMR (500 MHz, CDCl₃+CD₃OD) δ ppm: 0.60 (3H, s, H₃-18), 0.79 (3H, d, J = 6.5 Hz, H₃-27), 0.82 (3H, t, J = 7.5 Hz, H₃-29), 0.85 (3H, d, J = 6.5 Hz, H₃-26), 1.04 (3H, d, J = 6.5 Hz, H₃-21), 1.08 (3H, s, H₃-19), 3.62 (1H, br.s, H-6), 4.08 (1H, m, H-3), 5.04 (1H, dd, J = 8.5, 15.0 Hz, H-23), 5.16 (1H, dd, J = 8.5, 15.0 Hz, H-22).5.34 (1H, dd, J = 2.0, 5.5 Hz, H-7).

¹³C NMR (125 MHz, CDCl₃+CD₃OD) δ ppm: 32.9 (C-1), 30.8 (C-2), 67.7 (C-3), 39.2 (C-4), 75.9 (C-5), 73.6 (C-6), 117.5 (C-7), 144.0 (C-8), 43.4 (C-9), 37.1 (C-10), 22.0 (C-11), 39.5 (C-12), 43.7 (C-13), 54.7 (C-14), 22.9 (C-15), 28.1 (C-16), 55.9 (C-17), 12.3 (C-18), 18.8 (C-19), 40.6 (C-20), 21.3 (C-21), 137.7 (C-22), 129.8 (C-23), 51.2 (C-24), 31.8 (C-25), 18.9 (C-26), 20.9 (C-27), 25.3 (C-28), 12.4 (C-29). [M. Anna, P. Vincenzo, S. Donato (1989). New polyhydroxysterols from the dictyoceratid sponges *Hippospongia communis, Spongia officinalis, Ircinia variabilis, and Spongionella gracilis, J. Nat. Prod.* **52**(5), 952-961].

Figure S7: ¹H-NMR (500 MHz, CDCl₃) spectrum of **3** ((22*E*,24*R*)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)

Figure S8: ¹³C-NMR (125 MHz, CDCl₃) spectrum of **3** ((22*E*,24*R*)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)

Figure S9: DEPT 90&135 spectrum of 3 ((22*E*,24*R*)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)

Figure S10: HSQC spectrum of **3** ((22*E*,24*R*)-ethylcholesta-7,22-dien-3β,5α,6β-triol)

Figure S11: HMBC spectrum of **3** ((22*E*,24*R*)-ethylcholesta-7,22-dien- 3β , 5α , 6β -triol)

Compound 4 (poriferasterol glucoside) :

¹H NMR (600 MHz, DMSO- d_6) δ ppm: 0.67 (3H, s, H₃-18), 0.77 (3H, d, J = 7.0 Hz, H₃-27), 0.78 (3H, t, J = 7.0 Hz, H-29), 0.82 (3H, d, J = 6.6 Hz, H₃-26), 0.92 (3H, s, H₃-19), 1.00 (3H, d, J = 7.0 Hz, H₃-21), 3.45 (1H, m, H-3), 5.32 (1H, m, H-6), 5.03 (1H, dd, J = 8.7, 15.3 Hz, H-23), 5.17 (1H, dd, J = 8.7, 15.3 Hz, H₃-22), 4.21 (1H, d, J = 7.5 Hz, H-1'), 2.91 (1H, m, H-2'), 3.11 (1H, m, H-3'), 3.02 (1H, m, H-4'), 3.08 (1H, m, H-5'), 3.64 (1H, ddd, J = 2.0, 5.5, 11.5 Hz, H-6'a), 3.40 (1H, m, H-6'b.).

¹³C NMR (150 MHz, DMSO-*d*₆) δ ppm: 36.2 (C-1), 26.2 (C-2), 76.9 (C-3), 28.3 (C-4), 140.4 (C-5), 121.1 (C-6), 38.3 (C-7), 31.4 (C-8), 49.6 (C-9), 36.8 (C-10), 20.5 (C-11), 39.0 (C-12), 41.7 (C-13), 56.2 (C-14), 23.8 (C-15), 29.2 (C-16), 55.3 (C-17), 11.8 (C-18), 19.0 (C-19), 40.0 (C-20), 20.7 (C-21), 137.9 (C-22), 128.8 (C-23), 50.5 (C-24), 31.2 (C-25), 18.7 (C-26), 21.0 (C-27), 24.7 (C-28), 12.2 (C-29), 100.7 (C-1'), 73.4 (C-2'), 76.7 (C-3'), 70.1 (C-4'), 76.7 (C-5'), 61.0 (C-6'). [K. Mahbuba, B. Mirajum and M. A. Quader (2012). Sterols and sterol glucoside from *Phyllanthus* species, *Dhaka Univ. J. Sci.* **60**(1), 5-10].

Figure S12: ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of **4** (poriferasterol glucoside)

Figure S13: ¹³C-NMR (125 MHz, DMSO-*d*₆) spectrum of 4 (poriferasterol glucoside)

Figure S14: DEPT 90&135 spectrum of 4 (poriferasterol glucoside)

Figure S15: HSQC spectrum of 4 (poriferasterol glucoside)

Figure S16: HMBC spectrum of 4 (poriferasterol glucoside)

Figure S17: NOESY spectrum of 4 (poriferasterol glucoside)

Compound **5** (perlolyrine) :

¹H NMR (500 MHz, DMSO-*d*₆) δ ppm: 8.36 (1H, d, J = 5.0 Hz, H-3), 8.05 (1H, d, J = 5.0 Hz, H-4), 8.25 (1H, d, J = 8.0 Hz, H-5), 7.28 (1H, dt, J = 1.0, 8.0 Hz, H-6), 7.59 (1H, dt, J = 1.0, 8.0 Hz, H-7), 7.75 (1H, d, J = 8.0 Hz, H-8), 7.19 (1H, d, J = 3.0 Hz, H-3'), 6.57 (1H, d, J = 3.0 Hz, H-4'), 4.65 (2H, d, J = 4.0 Hz, H-6').

¹³C NMR (125 MHz, DMSO-*d*₆) δ ppm: 133.1 (C-1), 138.1 (C-3), 113.6 (C-4), 121.6 (C-5), 119.7 (C-6), 128.4 (C-7), 112.4 (C-8), 130.4 (C-10), 129.4 (C-11), 120.6 (C-12), 141.0 (C-13), 152.1 (C-2'), 109.6 (C-3'), 109.0 (C-4'), 156.7 (C-5'), 55.9 (C-6'). [B. Dassonneville, B. Witulski, H. Detert (2011). [2+2+2] Cycloadditions of Alkynylynamides - A Total Synthesis of Perlolyrine and the First Total Synthesis of "Isoperlolyrine", *Eur. J. Org. Chem.* **2011**, 2836-2844.]

Figure S19: ¹³C-NMR (125 MHz, DMSO-*d*₆) spectrum of 5 (perlolyrine)

Figure S20: HSQC spectrum of 5 (perlolyrine)

Figure S21: HMBC spectrum of 5 (periolyrine)

Compound 6 (pyrrolezanthine-6-methyl ether)

¹H NMR (500 MHz, CDCl₃) δ ppm: 6.90 (1H, d,J = 4.0 Hz, H-3), 6.17 (1H, d, J = 4.0 Hz, H-4), 9.55 (1H, s, H-6), 7.01 (2H, d, J = 8.5 Hz, H-2', H-6'), 6.74 (2H, d, J = 8.5 Hz, H-3', H-5'), 2.94 (1H, t, J = 7.5 Hz, H-7'), 4.46 (1H, dd, J = 6.0, 7.5 Hz, H-8'), 4.14 (2H, s, H₂-1''), 3.30 (3H, s, H₃-3'').

¹³C NMR (125 MHz, CDCl₃) δ ppm: 132.4 (C-2), 124.3 (C-3), 111.3 (C-4), 139.0 (C-5), 179.4 (C-6), 130.7 (C-1'), 130.2 (C-2', C-6'), 115.4 (C-3', C-5'), 154.4 (C-4'), 36.8 (C-7'), 47.9 (C-8'), 65.6 (C-1''), 57.9 (C-3''). [G-H. Xu, Y-H. Kim, S-J. Choo, I-J. Ryoo, J-K. Yoo1, J-S. Ahn, and I-D. Yoo (2009). Chemical Constituents from the Leaves of *Ilex paraguariensis* Inhibit Human Neutrophil Elastase, *Arch. Pharm. Res.* **32**, 1215-1220]

Figure S23: ¹³C-NMR (125 MHz, CDCl₃) spectrum of 6 (pyrrolezanthine-6-methyl ether)

Figure S25: HMBC spectrum of 6 (pyrrolezanthine-6-methyl ether)

Compound 7 (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione):

¹H NMR (500 MHz, CDCl₃) δ ppm: 1.89 (1H, m, Ha-2'), 1.94 (1H, m, Ha-1'), 2.00 1H, (m, Hb-2'), 2.32 (1H, m, Hb-1'), 2.74 (1H, dd, J = 10.5, 14.5 Hz, Ha-7''), 3.49 (1H, m, Hb-7''), 3.56 (1H, m, Ha-3'), 3.63 (1H, m, Hb-3'), 4.07 (1H, t, J = 7.5 Hz, H-3), 4.21 (1H, br.d, J = 8.0 Hz, H-6), 6.80 (2H, d, J = 8.5 Hz, H-3'', H-5''), 7.07 (2H, d, J = 8.5 Hz, H-2'', H-6'').

¹³C NMR (125 MHz, CDCl₃) δ ppm: 169.5 (C-2), 59.1 (C-3), 165.1 (C-5), 56.2 (C-6), 28.3 (C-1'), 22.5 (C-2'), 45.4 (C-3'), 127.4 (C-1"), 130.3 (C-2", C-6"), 116.1 (C-3", C-5"), 155.3 (C-4"), 35.9 (C-7"). [Yusuke Sasaki, Yasuyuki Akutsu, Kenji Suzuki, Shinnobu Sakurada, and Kensuke Kisara (1981). Structure and Analgesic activity relationship of Cyclo-Tyrosyl-Arginyl and Its Three Stereoisomers, *Chem. Pharm. Bull.* **29**(11), 3403-3406.]

Figure S26: ¹H-NMR (500 MHz, CDCl3) spectrum of 7 (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione)

Figure S27: 13C-NMR (125 MHz, CDCl3) spectrum of **7** (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione)

Figure S28: COSY (1H-1H) spectrum of **7** (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5-piperazinedione)

Figure S29: HSQC spectrum of **7** (3-(3-aminopropyl)-**6**-[(**4**-hydroxyphenyl)methyl]-2,5piperazinedione)

Figure S30: HMBC spectrum of 7 (3-(3-aminopropyl)-6-[(4-hydroxyphenyl)methyl]-2,5piperazinedione)

Compound 8 (5-methyluracil)

¹H NMR (500 MHz, DMSO-*d*₆) δ ppm: 7.23 (1H, d, J = 1.0 Hz, H-6), 1.71 (3H, d, J= 1.5 Hz, H₃-7), 10.55 (1H, s, 1-NH), 10.96 (1H, 3-NH).

¹³C NMR (125 MHz, DMSO-*d*_δ) δ ppm: 151.5 (C-2), 164.9 (C-4), 107.7 (C-5), 137.7 (C-6), 11.7 (C-7). [Z.-G. Ding, J.-Y. Zhao, P.-W. Yang, M.-G. Li, R. Huang, X.-L. Cui and M.-L. Wen (2009), ¹H and ¹³C NMR assignments of eight nitrogen containing compounds from *Nocardia alba* sp.nov (YIM 30243T), *Magn. Reson. Chem.* **47**, 366-370].

Figure S31: ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 8 (5-methyluracil)

Figure S32: ¹³C-NMR (125 MHz, DMSO-*d*₆) spectrum of 8 (5-methyluracil)

Compound 9 (1*H*-indole-3-carboxylic acid)

¹H NMR (500 MHz, DMSO-*d*₆) δ ppm: 7.17 (1H, t, J = 7.5 Hz, H-7), 7.45 (1H, d, J = 7.5 Hz, H-5), 7.14 (1H, t, J = 7.5 Hz, H-6), 7.98 (1H, d, J = 2.0 Hz, H-2), 7.99 (1H, d, J = 7.5 Hz, H-8).

¹³C NMR (125 MHz, DMSO-*d*₆) δ ppm: 107.2 (C-2), 125.8 (C-3), 131.8 (C-4), 120.6 (C-5), 120.3 (C-6), 121.8 (C-7), 111.8 (C-8), 136.2 (C-9), 165.5 (C-10).

[M. S. Morales-Rios, J. Espiieira and P. Joseph-Nathan (1987). ¹³C NMR Spectroscopy of Indole Derivatives, *Magn. Reson.Chem.* **25**, 377-395].

Figure S33: ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of 9 (1*H*-indole-3-carboxylic acid)

Figure S34: ¹³C-NMR (125 MHz, DMSO-*d*₆) spectrum of 9 (1*H*-indole-3-carboxylic acid)

Compound **10** (adenosine): ¹H NMR (500 MHz, DMSO-*d*₆) $\delta_{\rm H}$ ppm: 8.13 (1H, s, H-2), 8.34 (1H, s, H-8), 7.30 (2H, bs, NH₂), 5.87 (1H, d, *J* = 6.0 Hz, H\alpha-1'), 4.60 (1H, dd, *J* = 5.0, 6.0 Hz, H\beta-2'), 4.14 (1H, ddd, *J* = 3.0, 4.5, 5.0 Hz, H-3'), 3.96 (1H, ddd, *J* = 3.0, 3.5, 4.5 Hz, H-4'), 3.67 (1H, ddd, *J* = 3.5, 4.5, 12.0 Hz, H_a-5'), 3.55 (1H, ddd, *J* = 3.5, 7.0, 12.0 Hz, H_b-5').

¹³C NMR (125 MHz, DMSO-*d*₆) $δ_{\rm C}$ ppm: 152.42 (C-2), 149.09 (C-4), 119.37 (C-5), 156.17 (C-6), 139.95 (C-8), 87.96 (C-1'), 73.49 (C-2'), 70.68 (C-3'), 85.92 (C-4'), 61.70 (C-5').

[P. Ciuffreda, S. Casati and A. Manzocchi (2007). Spectral Assignments ang Reference data Complete ¹H and ¹³C NMR spectral assignment of α - and β -adenosine, 2'-deoxyadenosine and their acetate derivatives, *Magn. Reson. Chem.* **45**, 781-784.]

Figure S35: ¹H-NMR (500 MHz, DMSO-*d*₆) spectrum of **10** (adenosine)

© 2021 ACG Publications. All rights reserved.

Figure S36: ¹³C-NMR (125 MHz, DMSO-*d*₆) spectrum of 10 (adenosine)

Figure S37: DEPT 90&135 spectrum of 10 (adenosine)

Compound **11** (*p*-hydroxybenzoic acid): ¹H NMR (500 MHz, CDCl₃+CD₃OD) δ ppm: 6.84 (2H, d, J = 8.5 Hz, H-3,H-5), 7.91 (2H, d, J = 8.5 Hz, H-2,H-6).

¹³C NMR (125 MHz, CDCl₃+CD₃OD) δ ppm: 132.54 (C-2, C-6), 122.08 (C-1), 115.56 (C-3, C-5), 162.31 (C-4), 169.63 (C-7).

[T. Jianwen, B. Pawe, L. Jikai, S. Bernd, S. Ales, H. Klaus (2004). Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected *Arabidopsis thaliana* roots and leaves, *Phytochemistry*. **65**, 691-699.].

Figure S38: ¹H-NMR (500 MHz, CDCl₃+CD₃OD) spectrum of **11** (*p*-hydroxybenzoic acid)

Figure S39: ¹³C-NMR (125 MHz, CDCl₃+CD₃OD) spectrum of 11 (*p*-hydroxybenzoic acid)

 $\ensuremath{\textcircled{O}}$ 2021 ACG Publications. All rights reserved.