## Supporting Information

Rec. Nat. Prod. 16:5 (2022) 509-514

## A New Eremophilanolide from the Fresh Roots of

## Rehmannia glutinosa

Yanling Liu ${ }^{1,2}$, Yangang Cao ${ }^{\mathbf{1 , 2}}$, Mengnan Zeng ${ }^{1.2}$, Mengna Wang ${ }^{1,2}$, Chen Xu ${ }^{1,2}$, Xiling Fan ${ }^{1,2}$, He Chen ${ }^{1,2}$, Yingjie Ren ${ }^{\mathbf{1 , 2}}$,Xiaoke Zheng ${ }^{1,2^{*}}$ and Weisheng Feng ${ }^{1,2^{*}}$<br>${ }^{1}$ School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China;<br>${ }^{2}$ The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China

Contents
Figure S1: HR-ESI-MS spectrum of compound 1 ..... 3
Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 1 ..... 4
Figure S3: The enhanced ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$ ..... 4
Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$ ..... 5
Figure S5: DEPT135 spectrum of 1 ..... 5
Figure S6: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ ..... 6
Figure S7: The enhanced ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ ..... 7
Figure S8: HSQC spectrum of $\mathbf{1}$ ..... 8
Figure S9: The enhanced HSQC spectrum of 1 ..... 9
Figure S10: HMBC spectrum of $\mathbf{1}$ ..... 10
Figure S11: The enhanced HMBC spectrum of 1 ..... 11
Figure S12: NOESY spectrum of 1 ..... 12
Figure S13:The enhanced NOESY spectrum of 1 ..... 13
Figure S14:UV spectrum of 1 ..... 14
Figure S15: IR spectrum of 1 ..... 14
Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 2 ..... 15
Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 2 ..... 15
Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{3}$ ..... 16
Figure S19: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{3}$ ..... 16
Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 4 ..... 17
Figure S21: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 4 ..... 17
Figure S22: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 5 ..... 18
Figure S23: ${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) of 5 ..... 18
Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 6 ..... 19
Figure S25: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 6 ..... 19
Figure S26: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 7 ..... 20
Figure S27: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 7 ..... 20
Figure S28: The Scifinder similarity report for new compound 1 ..... 21
Table 1: NMR data of compounds 1 and the similar compound ..... 22
Table 2: ${ }^{1} \mathrm{H}$ NMR data of compounds $1-7$ ..... 23
Table 3: ${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{1 - 7}$ ..... 25


Figure S1: HR-ESI-MS spectrum of compound 1
© 2022 ACG Publications. All rights reserved.


Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$


Figure S3: The enhanced ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$
(From $\delta_{\mathrm{H}} 0.8 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 5.2 \mathrm{ppm}\right)$
© 2022 ACG Publications. All rights reserved.


Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{1}$
XDH-2-5-10
XDH-2-5-10 DEPT135


Figure S5: DEPT135 spectrum of 1
© 2022 ACG Publications. All rights reserved.


Figure S6: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$
© 2022 ACG Publications. All rights reserved.


Figure S7: The enhanced ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}\left(\right.$ From $\delta_{\mathrm{H}} 0.8 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 5.2 \mathrm{ppm}\right)$
© 2022 ACG Publications. All rights reserved.


Figure S8:HSQC spectrum of $\mathbf{1}$
© 2022 ACG Publications. All rights reserved.


Figure S9: The enhanced HSQC spectrum of $\mathbf{1}\left(\right.$ From $\delta_{\mathrm{C}} 10 \mathrm{ppm}$ to $\left.\delta_{\mathrm{C}} 90 \mathrm{ppm}\right)$
© 2022 ACG Publications. All rights reserved.


Figure S10: HMBC spectrum of $\mathbf{1}$
© 2022 ACG Publications. All rights reserved.


Figure S11: The enhanced HMBC spectrum of $\mathbf{1}$ (From $\delta_{\mathrm{H}} 1.4 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 5.2 \mathrm{ppm}\right)$
© 2022 ACG Publications. All rights reserved.


Figure S12: NOESY spectrum of $\mathbf{1}$
© 2022 ACG Publications. All rights reserved.


Figure S13: The enhanced NOESY spectrum of $\mathbf{1}$ (From $\delta_{\mathrm{H}} 0.5 \mathrm{ppm}$ to $\delta_{\mathrm{H}} 5.0 \mathrm{ppm}$ )

## Thermo Scientific ~ VISIONpro SOFTWARE V4.41

| Operator Name | (None Entered) | Date of Report | 2020/12/24 |
| :--- | :--- | :--- | :--- |
| Department | (None Entered) | Time of Report | 21:27:43下午 |
| Organization | (None Entered) |  |  |
| Information | (None Entered) |  |  |
|  |  |  |  |
| Scan Graph |  |  |  |



Results Table - scan003,XDH-2-5-10,Cycle01

| nm | A | Peak Pick Method |
| :--- | :---: | :--- |
| 218.00 | 1.565 | Find 8 Peaks Above -3.0000 A |
| 318.00 | .029 | Start Wavelength 190.00 nm |
| 333.00 | .030 | Stop Wavelength 400.00 nm |
| 343.00 | .030 | Sort By Wavelength |
| Sensitivity | High |  |

Figure S14:UV spectrum of $\mathbf{1}$


Figure S15: IR spectrum of 1
© 2022 ACG Publications. All rights reserved.


Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 2


Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{2}$
© 2022 ACG Publications. All rights reserved.


Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) of $\mathbf{3}$

## XDH-7.38 XDH-7-38 C MEOD




Figure S19: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{3}$
© 2022 ACG Publications. All rights reserved.


Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) of $\mathbf{4}$
XDH-4-17
XDH-4-17 C
MEOD

| $\cdots$ | $9{ }^{\circ}$ |
| :---: | :---: |
| P | \%8 |
| 1 | 1 |




Figure S21: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 4
© 2022 ACG Publications. All rights reserved.


Figure S22: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{5}$


Figure S23: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 5
© 2022 ACG Publications. All rights reserved.


Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of $\mathbf{6}$

## $\mathrm{XDH}-2-5-45$ <br> $\mathrm{XDH}-2-5-45-\mathrm{C}$ MEOD




Figure S25: ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ of 6
© 2022 ACG Publications. All rights reserved.


Figure S26: ${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) of 7


Figure S27: ${ }^{13} \mathrm{C}$ NMR spectrum ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) of 7
© 2022 ACG Publications. All rights reserved.

Explorev Sowed Searchese Saiplone


Figure S28:The Scifinder similarity report for new compound 1

1


4,5,11-trimethyl-8,9-seco-1(10),7(11)-eremophiladien -8,12-olid-9-oic acid

Table1 : NMR data of compounds 1 and the similar compound

| No | $\mathbf{1}^{\mathbf{a}}$ |  | $\mathbf{4 , 5 , 1 1 - t r i m e t h y l - 8 , 9 - s e c o - ~}$ <br> $\mathbf{1 ( 1 0 ) , 7 ( 1 1 ) - e r e m o p h i l a d i e n ~}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathbf{- 8 , 1 2 - o l i d - 9 - 0 i c} \mathbf{a c i d}^{\mathbf{b}}$ |

[^0]© 2022 ACG Publications. All rights reserved.

Table 2 : ${ }^{1} \mathrm{H}$ NMR data of compounds $\mathbf{1 - 7}\left(\delta\right.$ in $\mathrm{ppm}, J$ in Hz, in $\mathrm{CD}_{3} \mathrm{OD}$ at 500 MHz )

| No | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} 7.04(1 \mathrm{H}, \mathrm{t}, J=3.9 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 5.54(1 \mathrm{H}, \mathrm{~d}, J=4.3 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 5.21(1 \mathrm{H}, \mathrm{~d}, J=6.4 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 5.44(1 \mathrm{H}, \mathrm{~d}, J=4.9 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 5.15(1 \mathrm{H}, \mathrm{~d}, J=7.6 \\ \mathrm{Hz}) \end{gathered}$ |  |  |
| 2 | $\begin{gathered} 2.15(2 \mathrm{H}, \mathrm{t}, J=4.9 \\ \mathrm{Hz}) \end{gathered}$ |  |  |  |  | 3.72 (2H, m) | $\begin{gathered} 2.50(1 \mathrm{H}, \mathrm{~d}, J=17.0 \\ \mathrm{Hz}) \end{gathered}$ |
|  |  |  |  |  |  |  | $\begin{gathered} 2.14(1 \mathrm{H}, \mathrm{~d}, J=17.0 \\ \mathrm{Hz}) \end{gathered}$ |
| 3 | 1.80 (1H, overlap) | $7.39(1 \mathrm{H}, \mathrm{s})$ | 7.46 (1H, brs) | 7.46 (1H, brs) | 7.51 (1H, brs) | 1.95 (1H, m) |  |
|  | 1.40 (1H, m) |  |  |  |  | 1.52 (1H, m) |  |
| 4 | 1.76 (1H, overlap) |  |  |  |  | 1.97 (1H, m) | 5.84 (1H, brs) |
|  |  |  |  |  |  | 1.88 (1H, m) |  |
| 5 | - | 3.17 (1H, m) | 3.20 (1H, m) | 3.20 (1H, m) | 3.21 (1H, m) |  |  |
| 6 | $\begin{gathered} 2.85(1 \mathrm{H}, \mathrm{~d}, J= \\ 13.9 \mathrm{~Hz}) \end{gathered}$ | 2.25 (1H, m) | 2.21 (1H, m) | 2.21 (1H, m) | 2.80 (1H, m) |  |  |
|  | $\begin{gathered} 2.75(1 \mathrm{H}, \mathrm{~d}, J= \\ 13.9 \mathrm{~Hz}) \end{gathered}$ | $1.43(1 \mathrm{H}, \mathrm{m})$ | 1.52 (1H, m) | 1.52 (1H, m) | 2.08 (1H, m) |  |  |
| 7 |  | $1.71(1 \mathrm{H}, \mathrm{m})$ | 2.06 (1H, m) | 2.06 (1H, m) | $5.83(1 \mathrm{H}, \mathrm{s})$ | $\begin{gathered} 7.40(1 \mathrm{H}, \mathrm{~d}, J= \\ 16.4 \mathrm{~Hz}) \end{gathered}$ | $\begin{gathered} 5.85(1 \mathrm{H}, \mathrm{~d}, J=2.5 \\ \mathrm{Hz}) \end{gathered}$ |
|  |  |  | 1.80 (1H, m) | 1.80 (1H, m) |  |  |  |
| 8 |  |  | $2.94(1 \mathrm{H}, \mathrm{m})$ | 2.94 (1H, m) |  | $\begin{gathered} 6.30(1 \mathrm{H}, \mathrm{~d}, J= \\ 16.4 \mathrm{~Hz}) \end{gathered}$ | $\begin{gathered} 5.85(1 \mathrm{H}, \mathrm{~d}, J=2.5 \\ \mathrm{Hz}) \end{gathered}$ |
| 9 |  | 2.20 (1H, m) | $\begin{gathered} 2.52(1 \mathrm{H}, \mathrm{t}, J=7.6 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 2.52(1 \mathrm{H}, \mathrm{t}, J=7.6 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 2.69(1 \mathrm{H}, \mathrm{t}, J=7.8 \\ \mathrm{Hz}) \end{gathered}$ |  | $\begin{gathered} 4.41(1 \mathrm{H}, \mathrm{t}, J=6.0 \\ \mathrm{Hz}) \end{gathered}$ |
| 10 |  | $1.30(3 \mathrm{H}, \mathrm{s})$ |  | $\begin{gathered} 5.12(1 \mathrm{H}, \mathrm{~d}, J=1.6 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 4.32(1 \mathrm{H}, \mathrm{~d}, J=4.3 \\ \mathrm{Hz}) \end{gathered}$ | 2.31 (3H, s) | $\begin{gathered} 1.28(3 \mathrm{H}, \mathrm{~d}, J=6.4 \\ \mathrm{Hz}) \end{gathered}$ |
|  |  |  |  | $\begin{gathered} 5.06(1 \mathrm{H}, \mathrm{~d}, J=1.6 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 4.16(1 \mathrm{H}, \mathrm{~d}, J=4.3 \\ \mathrm{Hz}) \end{gathered}$ |  |  |
| 11 |  |  |  |  |  | $1.22(3 \mathrm{H}, \mathrm{s})$ | 1.03 (3H, s) |
| 12 | $\begin{gathered} 4.91(2 \mathrm{H}, \mathrm{~d}, J=8.6 \\ \mathrm{Hz}) \end{gathered}$ | 3.68 (3H, s) | 3.69 (3H, s) |  | 3.70 (3H, s) | 0.96 (3H, s) | $1.02(3 \mathrm{H}, \mathrm{s})$ |
| 13 | $\begin{gathered} 4.78(1 \mathrm{H}, \mathrm{~d}, J= \\ 14.6 \mathrm{~Hz}) \end{gathered}$ |  |  |  |  | 1.03 (3H, s) | 1.91 (3H, s) |
|  | $\begin{gathered} 4.67(1 \mathrm{H}, \mathrm{~d}, J= \\ 14.6 \mathrm{~Hz}) \end{gathered}$ |  |  |  |  |  |  |
| 14 | $\begin{gathered} 0.93(3 \mathrm{H}, \mathrm{~d}, J=6.8 \\ \mathrm{Hz}) \end{gathered}$ |  |  |  |  |  |  |
| 15 | 1.18 (3H, s) |  |  |  |  |  |  |
| $1 '$ | $\begin{gathered} 4.27(1 \mathrm{H}, \mathrm{~d}, J=7.8 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 4.65(1 \mathrm{H}, \mathrm{~d}, J=8.0 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 4.65(1 \mathrm{H}, \mathrm{~d}, J=7.9 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 4.67(1 \mathrm{H}, \mathrm{~d}, J=7.9 \\ \mathrm{Hz}) \end{gathered}$ | 4.68 (1H, brs) | $\begin{gathered} 4.30(1 \mathrm{H}, \mathrm{~d}, J=7.7 \\ \mathrm{Hz}) \end{gathered}$ | $\begin{gathered} 4.32(2 \mathrm{H}, \mathrm{~d}, J=7.8 \\ \mathrm{Hz}) \end{gathered}$ |
| $2^{\prime}$ | 3.18 (1H, overlap) | 3.17 (1H, overlap) | 3.19 (1H, overlap) | 3.21 (1H, overlap) | 3.19 (1H, overlap) | 3.19 (1H, overlap) | 3.20 (1H, overlap) |


| 3' | 3.33 (1H, overlap) | 3.34 (1H, overlap) | 3.33 (1H, overlap) | 3.35 (1H, overlap) | 3.3-3.4 (1H, overlap) | 3.33 (1H, overlap) | 3.33 (1H, overlap) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4' | 3.27 (1H, overlap) | 3.23 (1H, overlap) | 3.23 (1H, overlap) | 3.26 (1H, overlap) | 3.3-3.4 (1H, overlap) | 3.23 (1H, overlap) | 3.24 (1H, overlap) |
| $5^{\prime}$ | 3.28 (1H, overlap) | 3.24 (1H, overlap) | 3.24 (1H, overlap) | 3.27 (1H, overlap) | $3.58(1 \mathrm{H}$, overlap) | 3.24 (1H, overlap) | 3.25 (1H, overlap) |
| $6 '$ | $\begin{gathered} 3.86(1 \mathrm{H}, \mathrm{~d}, J= \\ 11.8 \mathrm{~Hz}) \end{gathered}$ | $3.87(1 \mathrm{H}$, overlap) | $3.87(1 \mathrm{H}, \mathrm{~d}, J=11.8$ <br> $\mathrm{Hz})$ | $\begin{gathered} 3.88(1 \mathrm{H}, \mathrm{~d}, J= \\ 11.9 \mathrm{~Hz}) \end{gathered}$ | $\begin{gathered} 3.92(1 \mathrm{H}, \mathrm{dd}, J=1.8, \\ 11.3 \mathrm{~Hz}) \end{gathered}$ | $\begin{gathered} 3.84(1 \mathrm{H}, \mathrm{dd}, J= \\ 2.1,11.9 \mathrm{~Hz}) \end{gathered}$ | $\begin{gathered} 3.83(1 \mathrm{H}, \mathrm{dd}, J=2.0, \\ 12.0 \mathrm{~Hz}) \end{gathered}$ |
|  | 3.67 (1H, m) | 3.67 (1H, overlap) | 3.67 (1H, overlap) | $\begin{gathered} 3.65(1 \mathrm{H}, \mathrm{t}, J=6.1 \\ \mathrm{Hz}) \end{gathered}$ | 3.77 (1H, overlap) | 3.67 (1H, overlap) | $\begin{gathered} 3.62(1 \mathrm{H}, \mathrm{~d}, J=5.5 \\ \mathrm{Hz}) \end{gathered}$ |
| $1^{\prime \prime}$ |  |  |  |  | 4.68 (1H, brs) |  |  |
| $2^{\prime \prime}$ |  |  |  |  | 3.3-3.4 (1H, overlap) |  |  |
| $3 \prime$ |  |  |  |  | 3.3-3.4 (1H, overlap) |  |  |
| $4 "$ |  |  |  |  | $3.21(1 \mathrm{H}$, overlap) |  |  |
| 5' |  |  |  |  | 3.62 (1H, overlap) |  |  |
| $6{ }^{\prime \prime}$ |  |  |  |  | $\begin{gathered} 1.23(3 \mathrm{H}, \mathrm{~d}, J=5.5 \\ \mathrm{Hz}) \end{gathered}$ |  |  |

© 2022 ACG Publications. All rights reserved.

Table 3 : ${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{1}-\mathbf{7}\left(\delta\right.$ in ppm , in $\mathrm{CD}_{3} \mathrm{OD}$ at 125 MHz$)$

| No | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 143.3 | 95.4 | 97.5 | 96.4 | 99.2 | 44.9 | 42.4 |
| 2 | 25.1 |  |  |  |  | 75.6 | 50.7 |
| 3 | 26.7 | 152.0 | 153.3 | 153.9 | 153.8 | 27.0 | 201.2 |
| 4 | 36.6 | 113.4 | 111.9 | 111.3 | 113.0 | 36.0 | 127.2 |
| 5 | 41.9 | 32.0 | 36.2 | 35.5 | 37.3 | 84.9 | 167.5 |
| 6 | 33.1 | 30.7 | 33.4 | 31.9 | 40.3 | 82.3 | 80.0 |
| 7 | 126.8 | 40.7 | 29.6 | 31.6 | 129.1 | 152.4 | 131.5 |
| 8 | 177.6 | 80.5 | 46.3 | 150.5 | 145.3 | 132.0 | 135.3 |
| 9 | 170.8 | 52.3 | 45.1 | 46.4 | 47.5 | 201.3 | 77.3 |
| 10 | 137.1 | 24.6 | 178.7 | 109.9 | 61.9 | 26.9 | 21.2 |
| 11 | 162.4 | 169.4 | 169.3 | 170.3 | 170.0 | 18.8 | 23.4 |
| 12 | 72.3 | 51.6 | 51.7 |  | 52.2 | 22.7 | 24.7 |
| 13 | 65.2 |  |  |  |  | 26.9 | 19.6 |
| 14 | 16.2 |  |  |  |  |  |  |
| 15 | 21.9 |  |  |  |  |  |  |
| 1' $^{\prime}$ | 104.2 | 99.8 | 100.5 | 99.8 | 101.1 | 106.6 | 102.7 |
| $2^{\prime}$ | 74.8 | 74.7 | 74.7 | 74.7 | 75.3 | 75.1 | 75.2 |
| $3^{\prime}$ | 77.9 | 78.4 | 78.5 | 78.4 | 78.3 | 78.2 | 78.1 |
| $4^{\prime}$ | 71.5 | 71.7 | 71.4 | 71.7 | 72.7 | 71.7 | 71.7 |
| $5^{\prime}$ | 78.1 | 78.0 | 77.9 | 78.0 | 77.4 | 77.7 | 78.0 |
| $6^{\prime}$ | 62.7 | 62.9 | 62.7 | 62.8 | 68.1 | 62.8 | 62.8 |
| 1" $^{\prime \prime}$ |  |  |  |  | 102.6 |  |  |
| $2^{\prime \prime}$ |  |  |  |  | 71.9 |  |  |
| $3^{\prime \prime}$ |  |  |  |  | 74.5 |  |  |
| $4^{\prime \prime}$ |  |  |  |  | 70.4 |  |  |
| $5^{\prime \prime}$ |  |  |  |  | 72.9 |  |  |
| $6^{\prime \prime}$ |  |  |  |  | 18.6 |  |  |

© 2022 ACG Publications. All rights reserved.


[^0]:    ${ }^{\mathrm{a}}$ Recorded $\delta$ in ppm, $J$ in Hz , in $\mathrm{CD}_{3} \mathrm{OD} .{ }^{\mathrm{b}}$ Recorded in $\mathrm{CDCl}_{3}$.

