Supporting Information

Rec. Nat. Prod. 16:5 (2022) 509-514

A New Eremophilanolide from the Fresh Roots of

Rehmannia glutinosa

Yanling Liu ^{1,2}, Yangang Cao ^{1,2}, Mengnan Zeng^{1,2}, Mengna Wang^{1,2}, Chen Xu ^{1,2}, Xiling Fan ^{1,2}, He Chen ^{1,2}, Yingjie Ren ^{1,2},Xiaoke Zheng ^{1,2*}

and Weisheng Feng ^{1,2*}

¹School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China;

²The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China

Contents	Page
Figure S1: HR-ESI-MS spectrum of compound 1	3
Figure S2: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 1	4
Figure S3: The enhanced ¹ H NMR spectrum (500MHz, CD ₃ OD) of 1	4
Figure S4: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 1	5
Figure S5: DEPT135 spectrum of 1	5
Figure S6: ¹ H- ¹ H COSY spectrum of 1	6
Figure S7: The enhanced ¹ H- ¹ H COSY spectrum of 1	7
Figure S8: HSQC spectrum of 1	8
Figure S9: The enhanced HSQC spectrum of 1	9
Figure S10: HMBC spectrum of 1	10
Figure S11: The enhanced HMBC spectrum of 1	11
Figure S12: NOESY spectrum of 1	12
Figure S13: The enhanced NOESY spectrum of 1	13
Figure S14:UV spectrum of 1	14
Figure S15: IR spectrum of 1	14
Figure S16: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 2	15
Figure S17: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 2	15
Figure S18: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 3	16
Figure S19: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 3	16
Figure S20: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 4	17
Figure S21: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 4	17
Figure S22: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 5	18

Figure S23: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 5	18
Figure S24: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 6	19
Figure S25: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 6	19
Figure S26: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 7	20
Figure S27: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 7	20
Figure S28: The Scifinder similarity report for new compound 1	21
Table 1: NMR data of compounds 1 and the similar compound	22
Table 2: 1H NMR data of compounds 1–7	23
Table 3: ¹³ C NMR data of compounds 1–7	25

Figure S1: HR-ESI-MS spectrum of compound 1

(From $\delta_{\rm H}0.8$ ppm to $\delta_{\rm H}5.2$ ppm)

Figure S6: ¹H-¹H COSY spectrum of 1

Figure S7: The enhanced ¹H-¹H COSY spectrum of **1**(From $\delta_{\rm H}$ 0.8 ppm to $\delta_{\rm H}$ 5.2 ppm)

Figure S8:HSQC spectrum of 1

© 2022 ACG Publications. All rights reserved.

Figure S9: The enhanced HSQC spectrum of **1**(From $\delta c 10$ ppm to $\delta c 90$ ppm)

Figure S10: HMBC spectrum of 1

© 2022 ACG Publications. All rights reserved.

Figure S11: The enhanced HMBC spectrum of **1**(From $\delta_{\rm H}$ 1.4 ppm to $\delta_{\rm H}$ 5.2 ppm)

Figure S13: The enhanced NOESY spectrum of 1 (From $\delta_{\rm H}$ 0.5 ppm to $\delta_{\rm H}$ 5.0 ppm)

Thermo Scientific ~ VISIONpro SOFTWARE V4.41

Operator Name	(None Entered)	Date of Report	2020/12/24
Department	(None Entered)	Time of Report	21:27:43下午
Organization	(None Entered)		
Information	(None Entered)		

Scan Graph

Results Table - scan003,XDH-2-5-10,Cycle01

nm	A	Peak Pick Method
218.00	1.565	Find 8 Peaks Above -3.0000 A
318.00	.029	Start Wavelength190.00 nm
333.00	.030	Stop Wavelength400.00 nm
343.00	.030	Sort By Wavelength
Sensitivity	High	5.0 (E)

Figure S14:UV spectrum of 1

Figure S15: IR spectrum of 1

Figure S17:¹³C NMR spectrum (125MHz, CD₃OD) of 2

Figure S19: ¹³C NMR spectrum (125MHz, CD₃OD) of 3

Figure S21: ¹³C NMR spectrum (125MHz,CDCl₃) of 4

Figure S23: ¹³C NMR spectrum (125MHz, CD₃OD) of 5

Figure S25: ¹³C NMR spectrum (125MHz, CD₃OD) of 6

Figure S27:¹³C NMR spectrum (125MHz, CD₃OD) of 7

	ER		Peder
Explore - Save	d Searches SciPlanner		
Chemical Structure similarity >	substances (3)		
Research Topic Adurb Name Company Name Company Name Company Name Company Name Company Name Company Name Pacet Taga Standard Formula Property Solatona Mendiare Reacton Structure	Souther Editor Souther Editor Souther Editor South Type South	reaction search directly from the latest version of OlemDraw, Learn Nove	
Explore Save	d Searches 👻 SciPlanner		
Chemical Structure similarity			I
SUBSTANCES			
	Select All Deselect All		
	0 of 5 Similarly Candidates Selected 2 99 (most similar) 95:98 90:94 80:94 75:79 70:74 55:69 0:64 (least similar) Get Substances		Substances 0 0 0 3 50 603 4713 36664
Explore • Saved S	iearches + SciPlanner		Save Print Export
Chemical Structure skillarity > see SUBSTANCES @ Analyze Refine Analyze Sy: @	Assume() Second Second		N Dearth Garrier II Statistics Garrier Dealer Control
Sutistance Role Belogical Study 3 Analytical Study 2 Formation	Scow 15 1 2 85494-30-1 4 -1	8004-80 □ 2: 854694-55-6 %	Score 10 . 1.1208224-30-3 % -1 17 e 24
Norpresentine 2 Projectes 1 Show Mare	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	-44-	
	 regional inspectod; 	Absolute stareochemistry. C ₅₆ H ₃₆ O ₁₀ pD-Glicosynanosiduronic acid. [(1,42,64a,55,88a,6)-5(2,12,5-dhydro-2-dus-3-furany/)ethy[[decahydro-2- hydrour-1,44-dhreshyd-6-methylane-1-naphthalany[[methy]]	Start Han Osa Absolute startechanistry. S2-billioportresoduronis acid. [[15445526335-52]2(2:5-8hydro-2-auc-3-furanyi]ethyl]dechydro-2-hydrony-1. 4-d-mathil-6-mathilanet-incapitalian(]]mathil.

Figure S28: The Scifinder similarity report for new compound 1

Table1 : NMR data of compounds 1 and the similar compound

No	1ª	4,5,11-trimethyl-8,9-seco- 1(10),7(11)-eremophiladien -8,12-olid-9-oic acid ^b			
	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	
1	7.04 (1H, t, $J = 3.9$ Hz)	143.3	7.19 (1H, brs)	144.1	
2	2.15 (2H, t, $J = 4.9$ Hz)	25.1	2.18 (2H, brs)	24.2	
3	1.80 (1H, overlap)	26.7	1.90 (1H, m, H-3b)	25.3	
	1.40 (1H, m)		1.43 (1H, m, H-3b)		
4	1.76 (1H, overlap)	36.6	1.80 (1H, m)	35.1	
5	-	41.9		40.8	
6	2.85 (1H, d, J = 13.9 Hz)	33.1	2.84 (1H, d, $J = 13.7$ Hz)	31.7	
	2.75 (1H, d, J = 13.9 Hz)		2.74 (1H, d, J = 13.7 Hz)		
7		126.8		125.4	
8		177.6		175.5	
9		170.8		175.5	
10		137.1		135.4	
11		162.4		159.5	
12	4.91 (2H, d, J = 8.6 Hz)	72.3	4.63 (2H, brs)	72.5	
13	4.78 (1H, d, J = 14.6 Hz)	65.2	2.06 (3H, s)	13.2	
	4.67 (1H, d, J = 14.6 Hz)				
14	0.93 (3H, d, J = 6.8 Hz)	16.2	0.93 (3H, d, J = 6.8 Hz)	15.7	
15	1.18 (3H, s)	21.9	0.94 (3H, s)	21.3	
1'	4.27 (1H, d, J = 7.8 Hz)	104.2			
2'	3.18 (1H, overlap)	74.8			
3'	3.33 (1H, overlap)	77.9			
4'	3.27 (1H, overlap)	71.5			
5'	3.28 (1H, overlap)	78.1			
6'	3.86 (1H, d, J = 11.8 Hz)	62.7			
	3.67 (1H, m)				

^a Recorded δ in ppm, J in Hz, in CD₃OD. ^b Recorded in CDCl₃.

No	1	2	3	4	5	6	7
1	7.04 (1H, t, <i>J</i> = 3.9 Hz)	5.54 (1H, d, <i>J</i> = 4.3 Hz)	5.21 (1H, d, <i>J</i> = 6.4 Hz)	5.44 (1H, d, <i>J</i> = 4.9 Hz)	5.15 (1H, d, <i>J</i> = 7.6 Hz)		
2	2.15 (2H, t, <i>J</i> = 4.9 Hz)					3.72 (2H, m)	2.50 (1H, d, <i>J</i> = 17.0 Hz)
							2.14 (1H, d, <i>J</i> = 17.0 Hz)
3	1.80 (1H, overlap)	7.39 (1H, s)	7.46 (1H, brs)	7.46 (1H, brs)	7.51 (1H, brs)	1.95 (1H, m)	
	1.40 (1H, m)					1.52 (1H, m)	
4	1.76 (1H, overlap)					1.97 (1H, m)	5.84 (1H, brs)
						1.88 (1H, m)	
5	-	3.17 (1H, m)	3.20 (1H, m)	3.20 (1H, m)	3.21 (1H, m)		
6	2.85 (1H, d, J = 13.9 Hz)	2.25 (1H, m)	2.21 (1H, m)	2.21 (1H, m)	2.80 (1H, m)		
	2.75 (1H, d, <i>J</i> = 13.9 Hz)	1.43(1H, m)	1.52 (1H, m)	1.52 (1H, m)	2.08 (1H, m)		
7		1.71 (1H, m)	2.06 (1H, m)	2.06 (1H, m)	5.83 (1H, s)	7.40 (1H, d, <i>J</i> =	5.85 (1H, d, $J = 2.5$
			1.80 (1H, m)	1.80 (1H, m)		16.4 Hz)	Hz)
8			2.94 (1H, m)	2.94 (1H, m)		6.30 (1H, d, <i>J</i> = 16.4 Hz)	5.85 (1H, d, <i>J</i> = 2.5 Hz)
9		2.20 (1H, m)	2.52 (1H, t, <i>J</i> = 7.6 Hz)	2.52 (1H, t, <i>J</i> = 7.6 Hz)	2.69 (1H, t, <i>J</i> = 7.8 Hz)		4.41 (1H, t, <i>J</i> = 6.0 Hz)
10		1.30 (3H, s)		5.12 (1H, d, <i>J</i> = 1.6 Hz)	4.32 (1H, d, <i>J</i> = 4.3 Hz)	2.31 (3H, s)	1.28 (3H, d, <i>J</i> = 6.4 Hz)
				5.06 (1H, d, <i>J</i> = 1.6 Hz)	4.16 (1H, d, <i>J</i> = 4.3 Hz)		
11						1.22 (3H, s)	1.03 (3H, s)
12	4.91 (2H, d, <i>J</i> = 8.6 Hz)	3.68 (3H, s)	3.69 (3H, s)		3.70 (3H, s)	0.96 (3H, s)	1.02 (3H, s)
13	4.78 (1H, d, <i>J</i> = 14.6 Hz)					1.03 (3H, s)	1.91 (3H, s)
	4.67 (1H, d, <i>J</i> = 14.6 Hz)						
14	0.93 (3H, d, <i>J</i> = 6.8 Hz)						
15	1.18 (3H, s)						
1'	4.27 (1H, d, <i>J</i> = 7.8 Hz)	4.65 (1H, d, <i>J</i> = 8.0 Hz)	4.65 (1H, d, <i>J</i> = 7.9 Hz)	4.67 (1H, d, <i>J</i> = 7.9 Hz)	4.68 (1H, brs)	4.30 (1H, d, <i>J</i> = 7.7 Hz)	4.32 (2H, d, <i>J</i> = 7.8 Hz)
2'	3.18 (1H, overlap)	3.17 (1H, overlap)	3.19 (1H, overlap)	3.21 (1H, overlap)	3.19 (1H, overlap)	3.19 (1H, overlap)	3.20 (1H, overlap)

Table 2 : ¹ H NMR	data of compounds	1–7 (δ in ppm, .	<i>I</i> in Hz, in	CD ₃ OD at 500	MHz)
------------------------------	-------------------	--------------------------	--------------------	---------------------------	------

 $\ensuremath{\textcircled{O}}$ 2022 ACG Publications. All rights reserved.

3'	3.33 (1H, overlap)	3.34 (1H, overlap)	3.33 (1H, overlap)	3.35 (1H, overlap)	3.3-3.4 (1H, overlap)	3.33 (1H, overlap)	3.33 (1H, overlap)
4'	3.27 (1H, overlap)	3.23 (1H, overlap)	3.23 (1H, overlap)	3.26 (1H, overlap)	3.3-3.4 (1H, overlap)	3.23 (1H, overlap)	3.24 (1H, overlap)
5'	3.28 (1H, overlap)	3.24 (1H, overlap)	3.24 (1H, overlap)	3.27 (1H, overlap)	3.58(1H, overlap)	3.24 (1H, overlap)	3.25 (1H, overlap)
6'	3.86 (1H, d, <i>J</i> = 11.8 Hz)	3.87(1H, overlap)	3.87 (1H, d, <i>J</i> = 11.8 Hz)	3.88 (1H, d, <i>J</i> = 11.9 Hz)	3.92 (1H, dd, <i>J</i> = 1.8, 11.3 Hz)	3.84 (1H, dd, <i>J</i> = 2.1, 11.9 Hz)	3.83 (1H, dd, J = 2.0, 12.0 Hz)
	3.67 (1H, m)	3.67 (1H, overlap)	3.67 (1H, overlap)	3.65(1H, t, J = 6.1) Hz)	3.77 (1H, overlap)	3.67 (1H, overlap)	3.62 (1H, d, <i>J</i> = 5.5 Hz)
1"					4.68 (1H, brs)		
2"					3.3-3.4 (1H, overlap)		
3"					3.3-3.4 (1H, overlap)		
4"					3.21(1H, overlap)		
5"					3.62 (1H, overlap)		
6"					1.23 (3H, d, <i>J</i> = 5.5 Hz)		

No	1	2	3	4	5	6	7
1	143.3	95.4	97.5	96.4	99.2	44.9	42.4
2	25.1					75.6	50.7
3	26.7	152.0	153.3	153.9	153.8	27.0	201.2
4	36.6	113.4	111.9	111.3	113.0	36.0	127.2
5	41.9	32.0	36.2	35.5	37.3	84.9	167.5
6	33.1	30.7	33.4	31.9	40.3	82.3	80.0
7	126.8	40.7	29.6	31.6	129.1	152.4	131.5
8	177.6	80.5	46.3	150.5	145.3	132.0	135.3
9	170.8	52.3	45.1	46.4	47.5	201.3	77.3
10	137.1	24.6	178.7	109.9	61.9	26.9	21.2
11	162.4	169.4	169.3	170.3	170.0	18.8	23.4
12	72.3	51.6	51.7		52.2	22.7	24.7
13	65.2					26.9	19.6
14	16.2						
15	21.9						
1'	104.2	99.8	100.5	99.8	101.1	106.6	102.7
2'	74.8	74.7	74.7	74.7	75.3	75.1	75.2
3'	77.9	78.4	78.5	78.4	78.3	78.2	78.1
4'	71.5	71.7	71.4	71.7	72.7	71.7	71.7
5'	78.1	78.0	77.9	78.0	77.4	77.7	78.0
6'	62.7	62.9	62.7	62.8	68.1	62.8	62.8
1"					102.6		
2"					71.9		
3"					74.5		
4"					70.4		
5"					72.9		
6"					18.6		

Table 3 : ¹³C NMR data of compounds $1-7(\delta$ in ppm, in CD₃OD at 125 MHz)