Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

A new megastigmane glycoside and other constituents from Amomum muricarpum Elmer

Tran Thi Thu Phuong¹, Nguyen Hai Dang^{1,*}, Nguyen Thi Hong Anh², Do Hoang Giang² and Nguyen Tien Dat^{2,*}

1 University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

2 Center for Research and Technology Transfer, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

Table of Contents				
Figure S1: HRESIMS spectrum of compound (1)	2			
Figure S2: ¹ H NMR spectrum of compound (1). Measured in CD ₃ OD, 500 MHz	2			
Figure S3: ¹ H NMR spectrum (3.0-5.0 ppm) of compound (1) . Measured in CD ₃ OD, 500 MHz	3			
Figure S4: ¹ H NMR spectrum (0.8-2.2 ppm) of compound (1) . Measured in CD ₃ OD, 500 MHz	3			
Figure S5: ¹³ C NMR spectrum of compound (1). Measured in CD ₃ OD, 125 MHz	4			
Figure S6: ¹³ C NMR spectrum (67-115 ppm) of compound (1) . Measured in CD ₃ OD, 125 MHz	4			
Figure S7: ¹³ C NMR spectrum (17-47 ppm) of compound (1) . Measured in CD ₃ OD, 125 MHz	5			
Figure S8: HSQC NMR spectrum of compound (1). Measured in CD ₃ OD	6			
Figure S9: COSY NMR spectrum of compound (1). Measured in CD ₃ OD	7			
Figure \$10: HMBC NMR spectrum of compound (1). Measured in CD ₃ OD	8			
Figure S11: ¹ H NMR spectrum of compound (1). Measured in Pyridine- <i>d</i> ₅ , 500 MHz				
Figure S12: ¹³ C NMR spectrum of compound (1). Measured in Pyridine- <i>d</i> ₅ , 125 MHz	10			
Figure S13: HSQC NMR spectrum of compound (1). Measured in Pyridine-d ₅	11			
Figure S14: HMBC NMR spectrum of compound (1). Measured in Pyridine-d ₅	12			
Figure S15: NOESY NMR spectrum of compound (1). Measured in Pyridine- d_5	13			
Figure S16: The SciFinder search for the new compound (1)	14			
Table S1: Structure and NMR data of compound 1 and the most similar compound, scorospiroside				

Figure S1: HRESIMS spectrum of compound (1)

Figure S2: ¹H NMR spectrum of compound (1). Measured in CD₃OD, 500 MHz

Figure S3: ¹H NMR spectrum (3.0-5.0 ppm) of compound (1). Measured in CD₃OD, 500 MHz

Figure S14: ¹H NMR spectrum (0.8-2.2 ppm) of compound (1). Measured in CD₃OD, 500 MHz

Figure S6: ¹³C NMR spectrum (67-115 ppm) of compound (1). Measured in CD₃OD, 125 MHz

Figure S7: ¹³C NMR spectrum (17-47 ppm) of compound (1). Measured in CD₃OD, 125 MHz

Figure S8: HSQC NMR spectrum of compound (1). Measured in CD₃OD

Figure S9: COSY NMR spectrum of compound (1). Measured in CD₃OD. COSY correlation

Figure S10: HMBC NMR spectrum of compound (1). Measured in CD₃OD Key HMBC → correlations

Figure S11: ¹H NMR spectrum of compound (1). Measured in Pyridine-*d*₅, 500 MHz

Figure S12: ¹³C NMR spectrum of compound (1). Measured in Pyridine-*d*₅, 125 MHz

Figure S13: HSQC NMR spectrum of compound (1). Measured in Pyridine-d₅

Figure S14: HMBC NMR spectrum of compound (1). Measured in Pyridine- d_5

Figure S15: NOESY NMR spectrum of compound (1). Measured in Pyridine- d_5

Figure S16: The Scifinder search for the new compound (1)

Table S1: Structure and NMR data of compound 1 and the most similar compound, scorospiroside

No.	$\delta c^{\#,a}$	б н ^{#,с}	δc #,b	δ н ^{#,d}
1	39.5		39.5	
2	44.8	2.09 (1H, t, <i>J</i> = 12.0 Hz) 1.97 (1H, dd, <i>J</i> = 12.0, 4.0 Hz)	44.8	2.13(1 H, t, J = 12.0 Hz) 1.96 (1 H, dd, J = 12.0, 4.0 Hz)
3	72.1	4.80 (1H, m)	72.4	4.79 (1H, tt, $J = 12.0$, 4.0 Hz)
4	43.8	2.43 (1H, brd, $J = 11.0 \text{ Hz}$) 2.17 (1H, dd, $J = 13.0$, 12.0 Hz)	44.0	2.50 (1H, brd, $J = 13.0 \text{ Hz}$) 2.23 (1H, dd, $J = 13.0 \text{ Hz}$)
5	77.4		77.4	
6	90.2		90.2	
7	27.5	2.30 (1H, m) 1.93 (1H, m)	27.5	2.34 (1H, m) 1.88-2.00 (1H, m)
8	35.5	1.87 (1H, m) 1.34 (1H, m)	35.6	1.88-2.00 (1H, m) 1.42 (1H, m)
9	76.6	4.04 (1H, m)	76.7	4.10 (1H, m)
10	21.1	1.16 (3H, d, J = 6.5 Hz)	21.2	1.21 (3H, d, $J = 6.0 \text{ Hz}$)
11	28.7	0.95 (3H, s)	28.7	0.96 (3H, s)
12	26.2	1.47 (3H, s)	26.2	1.43 (3H, s)
13	28.0	1.35 (3H, s)	28.1	1.37 (3H, s)
1'	102.6	4.96 (1H, d, J = 7.5 Hz)	102.6	5.01 (1H, d, J = 8.0 Hz)
2'	75.2	3.99 (1H, m)	75.3	4.00 (1H, dd, J = 8.0, 9.0 Hz)
3'	76.6	4.12 (1H, m)	78.6	4.19 (1H, t, J = 9.0 Hz)
4'	71.8	4.82 (1H, m)	71.7	4.25 (1H, t, J = 9.0 Hz)
5'	73.9	4.20 (1H, m)	78.1	3.81 (1H, m)
6'	68.5	4.09 (1H, m) 4.56 (1H, m)	62.8	4.34 (1H, dd, $J = 12.0$, 5.0 Hz) 4.45 (1H, dd, $J = 12.0$, 5.0 Hz)
1"	102.3	5.46 (1H, brs)		
2"	72.6	4.22 (1H, m)		
3"	72.2	4.47 (1H, m)		
4"	69.5	4.33 (1H, m)		
5"	69.5	4.30 (1H, m)		
6"	18.6	1.60 (3H, \dot{d} , $J = 6.5$ Hz)		

[#] Measure in pyridine-d₅, a 125 MHz; b 100 MHz; c 500 MHz; d 400 MHz;

F. Abe and T. Yamauchi (1993). Megastigmanes and flavonoids from the leaves of *Scorodocarpus borneensis*, *Phytochemistry* **33** (**6**), 1499-1501.