Supporting Information

Org. Commun. X:X (2022) XX-XX

Optimization of Kumada cross-coupling reactions of tri- and tetra- bromothiophenes and symmetrical di-bromo-2, 2' bithiophene with cyclohexylmagnesium bromide: Synthesis, DFT studies and nonlinear optical analysis

Adnan A. Dahadha ¹, Mohammad Abunuwar ²¹ Mohammad Al-Dhoun ², Mohammed Hassan ³ and Mohamed J. Saadh ⁴

¹Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman, Jordan

²Faculty of Pharmacy, Philadelphia University, Amman, Jordan. ³Department of Chemistry, Faculty of Science, Ibb University, Ibb, Yemen.

⁴Faculty of Pharmacy, Middle East University, Amman, Jordan

Table of Contents	Page
Figure S1: ¹ H-NMR (CDCl ₃ , 200.13 MHz) Spectrum of 4a	2
Figure S2: ¹³ C-NMR (CDCl3, 50.32 MHz) Spectrum of 4a	3
Figure S3: ¹ H-NMR (CDCl ₃ , 200.13 MHz) Spectrum of 4b	4
Figure S4: ¹³ C-NMR (CDCl3, 50.32 MHz) Spectrum of 4b	5
Figure S5: ¹ H-NMR (CDCl ₃ , 200.13 MHz) Spectrum of 4c	6
Figure S6: ¹³ C-NMR (CDCl3, 50.32 MHz) Spectrum of 4c	7
Figure S7: ¹ H-NMR (CDCl ₃ , 200.13 MHz) Spectrum of 4d	8
Figure S8: ¹³ C-NMR (CDCl ₃ , 50.32 MHz) Spectrum of 4d	9
Figure S9: ¹ H-NMR (CDCl ₃ , 200.13 MHz) Spectrum of 4e	10
Figure S10: ¹³ C-NMR (CDCl ₃ , 50.32 MHz) Spectrum of 4e	11
Figure S11: ¹ H-NMR (CDCl ₃ , 200.13 MHz) Spectrum of 4f	12
Figure S12: ¹³ C-NMR (CDCl ₃ , 50.32 MHz) Spectrum of 4f	13
Figure S13: HOMO-LUMO plot of 2,3,4-tricyclohexylthiophene 4a (isovalue = 0.02	14
Figure S14 : HOMO-LUMO plot of 2,3,5-tricyclohexylthiophene 4b (isovalue = 0.02)	15
Figure S15 : HOMO-LUMO plot of 2,3,4,5-tetracyclohexylthiophene 4c (isovalue = 0.02)	16
Figure S16 : HOMO-LUMO plot of 3,3'-dicyclohexyl-2,2'-bithiophene 4d (isovalue = 0.02)	17
Figure S17 : HOMO-LUMO plot of 4,4'-dicyclohexyl-2,2'-bithiophene 4e (isovalue = 0.02)	18
Figure S18 : HOMO-LUMO plot of 5,5'-dicyclohexyl-2,2'-bithiophene 4f (isovalue = 0.02)	19
Figure S19: MEP map of 2,3,4-tricyclohexylthiophene 4a (isovalue = 0.02)	20
Figure S20: MEP map of 2,3,5-tricyclohexylthiophene 4b (isovalue = 0.02)	21
Figure S21 : MEP map of 2,3,4,5-tetracyclohexylthiophene 4c (isovalue = 0.02)	22
Figure S22: MEP map of 3,3'-dicyclohexyl-2,2'-bithiophene 4d (isovalue = 0.02)	23
Figure S23: MEP map of 4,4'-dicyclohexyl-2,2'-bithiophene 4e (isovalue = 0.02)	24
Figure S24: MEP map of 5,5'-dicyclohexyl-2,2'-bithiophene 4f (isovalue = 0.02)	25
Figure S25: The polarizability α (esu), (a), the anisotropy of the hyperpolarizability $\Delta\alpha$ (esu),	26
(b), the first order hyperpolarizability β (esu), (c), for the titled compounds 4a-f, thiophene	
and standard urea.	

Figure S1: ¹H-NMR (CDCl₃, 200.13 MHz) Spectrum of 4a

Figure S2: ¹³C-NMR (CDCl3, 50.32 MHz) Spectrum of 4a

Figure S3: ¹H-NMR (CDCl₃, 200.13 MHz) Spectrum of 4b

Figure S4: ¹³C-NMR (CDCl3, 50.32 MHz) Spectrum of 4b

Figure S5: ¹H-NMR (CDCl₃, 200.13 MHz) Spectrum of 4c

Figure S6: ¹³C-NMR (CDCl3, 50.32 MHz) Spectrum of 4c

Figure S7: ¹H-NMR (CDCl₃, 200.13 MHz) Spectrum of 4d

Figure S8: ¹³C-NMR (CDCl₃, 50.32 MHz) Spectrum of 4d

Figure S9: ¹H-NMR (CDCl₃, 200.13 MHz) Spectrum of 4e

Figure S10: ¹³C-NMR (CDCl₃, 50.32 MHz) Spectrum of 4e

Figure S11: ¹H-NMR (CDCl₃, 200.13 MHz) Spectrum of 4f

Figure S12: ¹³C-NMR (CDCl₃, 50.32 MHz) Spectrum of 4f

Figure S13: HOMO-LUMO plot of 2,3,4-tricyclohexylthiophene 4a (isovalue = 0.02

Figure S14: HOMO-LUMO plot of 2,3,5-tricyclohexylthiophene 4b (isovalue = 0.02)

Figure S15: HOMO-LUMO plot of 2,3,4,5-tetracyclohexylthiophene 4c (isovalue = 0.02)

Figure S16 : HOMO-LUMO plot of 3,3'-dicyclohexyl-2,2'-bithiophene **4d (isovalue = 0.02)**

Figure S17: HOMO-LUMO plot of 4,4'-dicyclohexyl-2,2'-bithiophene 4e (isovalue = 0.02

Figure S18 : HOMO-LUMO plot of 5,5'-dicyclohexyl-2,2'-bithiophene **4f (isovalue = 0.02)**

Figure S19: MEP map of 2,3,4-tricyclohexylthiophene 4a (isovalue = 0.02)

Figure S20 : MEP map of 2,3,5-tricyclohexylthiophene **4b** (**isovalue = 0.02**)

Figure S21 : MEP map of 2,3,4,5-tetracyclohexylthiophene **4c (isovalue = 0.02)**

Figure S22 : MEP map of 3,3'-dicyclohexyl-2,2'-bithiophene 4d (isovalue = 0.02)

Figure S23 : MEP map of 4,4'-dicyclohexyl-2,2'-bithiophene **4e** (**isovalue = 0.02**)

Figure S24 : MEP map of 5,5'-dicyclohexyl-2,2'-bithiophene **4f (isovalue = 0.02)**

Figure S25: The polarizability α (esu), (a), the anisotropy of the hyperpolarizability $\Delta\alpha$ (esu), (b), the first order hyperpolarizability β (esu), (c), for the titled compounds 4a-f, thiophene and standard urea.