Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

Todasinoid A, a New Eremophilane-type Sesquiterpene from

the Plant Toddalia asiatica

Lijing Cai, Mengying Zhang, Jie He and Tingting Lin

Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, People's Republic of China.

Table of Contents	Page		
Figure S1: ¹ H NMR spectrum of 1 in DMSO- <i>d</i> ₆ (400 MHz)	2		
Figure S2: ¹³ C NMR spectrum of 1 in DMSO- <i>d</i> ₆ (100 MHz)	2		
Figure S3: HSQC spectrum of 1 in DMSO- <i>d</i> ₆	3		
Figure S4: ¹ H- ¹ H COSY spectrum of 1 in DMSO- <i>d</i> ₆	3		
Figure S5: HMBC spectrum of 1 in DMSO- <i>d</i> ₆	4		
Figure S6: NOESY spectrum of 1 in DMSO- <i>d</i> ₆	4		
Figure S7: HRESIMS data of 1	5		
Figure S8: ¹ H NMR spectrum of 2 in CDCl ₃ (400 MHz)	5		
Figure S9: ¹³ C NMR spectrum of 2 in CDCl ₃ (100 MHz)	6		
Figure S10: ¹ H NMR spectrum of 3 in CDCl ₃ (400 MHz)	6		
Figure S11: ¹ H NMR spectrum of 4 in CDCl ₃ (400 MHz)	7		
Figure S12: ¹ H NMR spectrum of 5 in CD ₃ OD (400 MHz)	7		
Figure S13: ¹ H NMR spectrum of 6 in CD ₃ OD (400 MHz)	8		
Figure S14: ¹³ C NMR spectrum of 6 in CD ₃ OD (100 MHz)	8		
Figure S15: ¹ H NMR spectrum of 7 in CDCl ₃ (400 MHz)	9		
Figure S16: ¹ H NMR spectrum of 8 in Pyr- d_5 (400 MHz)	9		
Figure S17: ¹³ C NMR spectrum of 8 in Pyr-d ₅ (100 MHz)	10		
Figure S18: ¹ H NMR spectrum of 9 in CDCl ₃ (400 MHz)	10		
Figure S19: ¹³ C NMR spectrum of 9 in CDCl ₃ (100 MHz)			
Table S1: Comparison of NMR data of 1 and an anolog in literature			

Figure S1: ¹H NMR spectrum of 1 in DMSO-*d*₆ (400 MHz)

© 2022 ACG Publications. All rights reserved.

Figure S3: HSQC spectrum of 1 in DMSO-d₆

Figure S4: ¹H-¹H COSY spectrum of 1 in DMSO-*d*₆

Figure S5: HMBC spectrum of 1 in DMSO-*d*₆

Figure S6: NOESY spectrum of 1 in DMSO-*d*₆

Figure S8: ¹H NMR spectrum of 2 in CDCl₃ (400 MHz)

Figure S10: ¹H NMR spectrum of 3 in CDCl₃ (400 MHz)

Figure S14: ¹³C NMR spectrum of 6 in CD₃OD (100 MHz)

Figure S15: ¹H NMR spectrum of 7 in CDCl₃ (400 MHz)

Figure S16: ¹H NMR spectrum of 8 in Pyr- d_5 (400 MHz)

© 2022 ACG Publications. All rights reserved.

© 2022 ACG Publications. All rights reserved.

Figure S19: ¹³C NMR spectrum of 9 in CDCl₃ (100 MHz)

Table S1: Comparison of NMR data of 1 and an anolog in literature

(3S)-3-acetoxyeremophil-7(11),9(10)-dien-8-one

	1		(3S)-3-acetoxyeremophil-7(11),9(10)-dien-8-one		
No.	$\delta_{\rm H,}$ mult. (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H,}$ mult. (<i>J</i> in Hz)	δ _C , type	
1	β 2.96, d (14.7)	32.3. CH ₂	2.24, m	26.77. CH ₂	
1	α 2.33, d (14.7)	2	1.66, m	20177, 0112	
2	3.31, br s	44.4, CH	1.89, m	30.41, CH ₂	
			1.75, m	000000, 0002	
3	4.89, br s	74.8, CH	4.93, d (3.2)	72.68, CH	
4	2.15	27.0 CH	1 10 11 (7 0 0 0)	42.05 CH	
4	2.15, m	37.9, CH	1.12, dd(7.2, 3.3)	43.95, CH	
5		40.4, C		40.91, C	
6	β2.97, o	35.7, CH ₂	2.66, d (13.6)	41.56, CH ₂	
	α1.98, o	, -	1.81, d (13.6)	, _	
7		127.6, C		127.85, C	
8		190.5, C		190.05, C	
9	5.72, s	127.4, CH	5.90, s	126.82, CH	
10		164.4, C		164.96, C	
11		145.4, C		141.96, C	
12	4.10 d (13.1)	61.5, CH ₂	1.65, s	$22.60, CH_2$	
13	1.99, s	17.4, CH ₃	1.54, s	21.57, CH ₃	
14	1.05, s	17.9, CH ₃	1.01, s	18.07, CH ₃	
15	0.94, d (6.9)	11.1, CH ₃	0.73, s	11.14, CH ₃	
1′	2.92, m	$35.7, CH_2$			
2'	4.08, m	70.2, CH			
3'		173.9, C			
1''	2.08, s	20.8, CH ₃	2.27, s	20.36, CH ₃	
2''		169.9, C		169.2, C	