Supporting Information

Rec. Nat. Prod. 17:1 (2023) 93-98

A Novel Cyclohexane Carboxylic Acid Derivative from Black Turtle Bean (*Phaseolus vulgaris* L.)

Balkisu Abdulrahman^{1,2}, Fadime Aydogan^{1,3}, Fazila Zulfiqar¹,

Jianping Zhao¹, Zulfiqar Ali^{1*}, Ikhlas A. Khan¹, Bala Muntari⁴

and Bello Oluwasesan⁵

 ¹ National Centre for Natural Product Research School of Pharmacy University of Mississippi,38655, USA
² Department of Biochemistry and Molecular Biology, Federal University Dutsin- Ma, Katsina, Nigeria
³ Department of Biochemistry, Faculty of Basic Medical science Bayero University Kano, Nigeria
⁴ Department of Pharmaceutical Botany, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
⁵ Department of Chemistry, Faculty of Physical sciences, Federal University Dutsin- Ma, Katsina, Nigeria

Table of Contents	Page
Figure S1: HR-ESI-MS spectra of 1	2
Figure S2: IR spectrum of 1	3
Figure S3: ¹ H-NMR (500 MHz, CD ₃ OD) spectrum of 1	4
Figure S4: ¹³ C-NMR (125 MHz, CD ₃ OD) spectrum of 1	5
Figure S5: HSQC spectrum of 1 (500 MHz, CD ₃ OD)	6
Figure S6: ¹ H- ¹ H COSY spectrum of 1 (500 MHz, CD ₃ OD)	7
Figure S7: HMBC spectrum of 1 (500 MHz, CD3OD)	8
Figure S8: ¹ H-NMR (500 MHz, CD ₃ OD) spectrum of 2	9
Figure S9: ¹³ C-NMR (125 MHz, CD ₃ OD) spectrum of 2	10
Figure S10: ¹ H-NMR (500 MHz, CD ₃ OD) spectrum of 3	11
Figure S11: ¹³ C-NMR (125 MHz, CD ₃ OD) spectrum of 3	12
Figure S12: ¹ H-NMR (500 MHz, CD ₃ OD) spectrum of 4 and 5	13
Figure S13: ¹³ C-NMR (125 MHz, CD ₃ OD) spectrum of 4 and 5	14
Figure S14: Structure of most closely related compounds based on Sifinder search	15
Figure S15: Structure of most closely related compounds based on Sifinder search	16

Figure S1: HR-ESI-MS spectra of 1

Figure S2: IR spectrum of 1

Figure S3: ¹H-NMR (500 MHz, CD₃OD) spectrum of 1

Figure S4: ¹³C-NMR (125 MHz, CD₃OD) spectrum of 1

© 2022 ACG Publications. All rights reserved.

Figure S5: HSQC spectrum of 1, (500 MHz, CD₃OD)

© 2022 ACG Publications. All rights reserved.

1

Figure S6: ¹H-¹H COSY spectrum of 1, (500 MHz, CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S7: HMBC spectrum of 1, (500 MHz, CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S8: ¹H-NMR (500 MHz, CD₃OD) spectrum of 2

Figure **S9:** ¹³C-NMR (125 MHz, CD₃OD) spectrum of **2**

© 2022 ACG Publications. All rights reserved.

© 2022 ACG Publications. All rights reserved.

Figure S11: ¹³C-NMR (125 MHz, CD₃OD) spectrum of 3

© 2022 ACG Publications. All rights reserved.

Figure S12: ¹H-NMR (500 MHz, C₅D₅N) spectrum of 4 and 5

© 2022 ACG Publications. All rights reserved.

Figure S11: 13 C-NMR (125 MHz, C₅D₅N)) spectrum of 4 and 5

© 2022 ACG Publications. All rights reserved.

Position	δc	$\delta_{\rm H} (J \text{ in } Hz)$
1	178.7	
2	35.3	2.47 (dd, 15.3, 9.4, 1H
		2.26 (dd, 15.5, 9.2, 1H)
3	36.6	2.69 (m, 1H)
4	28.3	2.15–1.91 (m, 1H)
		1.40–1.27 (m, 1H)
5	29.7	1.40–1.27 (m, 2H)
6	32.5	2.15–1.91 (m, 1H)
		1.62–1.56 (m, 1H)
7	77.6	4.04 (m, 1H)
8	50.5	2.15–1.91 (m, 1H)
9	25.3	2.15–1.91 (m, 2H)
10	127.0	5.38 (m, 1H)
11	133.3	5.48 (m, 1H)
12	20.7	2.15–1.91 (m, 2H)
13	14.2	0.98 (t, 7.5, 3H)

Table S1 : Published ¹H and ¹³C NMR data of lasdiploic acid

Figure S14a: Structure and NMR data of lasdiploic acid which is the most similar to compound 1 according to Scifinder search.

S. Kumar, A.D. Pagar, F. Ahmad, V. Dwibedi, A. Wani, P.V. Bharatam, M. Chhibber, S. Saxena, and S. Pal I (2019). Xanthine oxidase inhibitors from an endophytic fungus Lasiodiplodia pseudotheobromae, *Bioorg. Chem.* **87**, 851–856.

Position	δc	$\delta_{\rm H} \left(J \text{ in } Hz \right)$
1	37.77	2.13 (m)
2	53.88	1.95 (m)
3	218.10	-
4	38.65	2.79, 2.37
5	27.15	2.33, 1.52
1	25.51	2.38
2	124.82	5.26 (dt, <i>J</i> =10.5, 5.5)
3	134.22	5.47 (dt, <i>J</i> =10.5, 5.5)
4	20.58	2.03, 1.64 (m)
5	14.05	0.97 (t, <i>J</i> =6.0)
CH_2	37.69	2.32
СООН	177.69	-

Table S2 : Published ¹H and ¹³C NMR data of jasmonic acid

Jasmonic Acid

Figure S14b: Structure of -Jasmonic Acid which is 2nd most similar to compound 1 according to Scifinder search.

A.Husain, A. Ahmad and P.K. Agrawal (1993). (-)-Jasmonic acid, a phytotoxic substance from botryodiplodia theobromae: characterization by NMR spectroscopic methods, *J. Nat. Prod.* **56**, 2008–2011.