Supporting Information

Rec. Nat. Prod. 17:1 (2023) 157-164

Chemical Constituents from the Whole Plant

of Pachysandra terminalis

Chao Ding[#], Yuze Li[#], Ying Wu, Yu Sun, Fengrui Wang, Yuze Li,

Huawei Zhang, Yi Jiang, Dongdong Zhang^{*} and Xiaomei Song^{*}

School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China

Table of Contents	page	
Figure S1: The IR spectrum of 1 (in KBr)	2	
Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)	3	
Figure S3: The ¹ H NMR spectrum of 1 (in CD ₃ OD)	4	
Figure S4: The ¹³ C NMR spectrum of 1 (in CD ₃ OD)	5	
Figure S5: The DEPT spectrum of 1 (in CD ₃ OD)	6	
Figure S6: The HSQC spectrum of 1 (in CD ₃ OD)	7	
Figure S7: The HSQC spectrum of 1 (in CD ₃ OD) (From δc 0 ppm to δc 80 ppm)	8	
Figure S8: The HMBC spectrum of 1 (in CD ₃ OD)	9	
Figure S9: The HMBC spectrum of 1 (in CD ₃ OD) (From δc 10 ppm to δc 85 ppm)	10	
Figure S10: The HMBC spectrum of 1 (in CD ₃ OD) (From δc 100 ppm to δc 180 ppm)	11	
Figure S11: The ¹ H- ¹ H COSY spectrum of 1 (in CD ₃ OD)	12	
Figure S12: The ¹ H- ¹ H COSY spectrum of 1 (in CD ₃ OD)(From $\delta_{\rm H}$ 0.5 ppm to $\delta_{\rm H}$ 5.0	13	
ppm)		
Figure S13: The NOESY spectrum of 1 (in CD ₃ OD)	14	
Figure S14: Search report of SciFinder of 1		
Table S1: Comparative ¹³ C NMR data of compound 1 with similar compound	16	
Figure S15: The IR spectrum of 2 (in KBr)	17	
Figure S16: The HR-ESI-MS spectrum of 2 (in MeOH)	18	
Figure S17: The ¹ H NMR spectrum of 2 (in CD ₃ OD)	19	
Figure S18: The ¹³ C NMR spectrum of 2 (in CD ₃ OD)	20	
Figure S19: The DEPT spectrum of 2 (in CD ₃ OD)	21	
Figure S20: The HSQC spectrum of 2 (in CD ₃ OD)	22	
Figure S21: The HMBC spectrum of 2 (in CD ₃ OD)	23	
Figure S22: The NOESY spectrum of 2 (in CD ₃ OD)	24	
Figure S23: Search report of SciFinder of 2	25	
Table S2: Comparative ¹³ C NMR data of compound 2 with similar compound		
NMR data of compounds 3-9		

Figure S1: The IR spectrum of 1 (in KBr)

© 2022 ACG Publications. All rights reserved.

Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)

Figure S3: The ¹H NMR spectrum of 1 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S4: The ¹³C NMR spectrum of 1 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S5: The DEPT spectrum of 1 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S6: The HSQC spectrum of 1 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S7:The HSQC spectrum of **1** (in CD₃OD) (From $\delta c \ 0$ ppm to $\delta c \ 80$ ppm)

$\ensuremath{\textcircled{O}}$ 2022 ACG Publications. All rights reserved.

© 2022 ACG Publications. All rights reserved.

f1 (ppm)

Figure S9: The HMBC spectrum of 1 (in CD₃OD) (From δc 10 ppm to δc 85 ppm)

© 2022 ACG Publications. All rights reserved.

Figure S10: The HMBC spectrum of 1 (in CD₃OD) (From δc 100 ppm to δc 180 ppm)

Figure S11: The ¹H-¹H COSY spectrum of 1 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S12. The ¹H-¹H COSY spectrum of **1** (in CD₃OD) (From $\delta_{\rm H}$ 0.5 ppm to $\delta_{\rm H}$ 5.0 ppm)

© 2022 ACG Publications. All rights reserved.

f1 (ppm)

Figure S13: The NOESY spectrum of 1 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S14: Search report of SciFinder of 1

Table S1: Comparative ¹³ C NMR data of compound 1 with similar compound				
Position	$HO_{10-5-4} = \begin{bmatrix} 0 & 1' & 3' \\ 9 & 0 & 2' & 4' \\ 2' & 0 & 2' & 4' \\ 0 & 0 & 2' & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\frac{1}{12} \xrightarrow{10}_{6} \xrightarrow{10}_{7} \xrightarrow{10}_{9} \xrightarrow{10}_{9}$ $0 \xrightarrow{12}_{1} \xrightarrow{6}_{1} \xrightarrow{17}_{1'} \xrightarrow{4}_{4'}$ Similar compound δ_{C}		
Compound 1 $\delta_{\rm C}$				
2	74.4, CH ₂	170.3, C		
3	52.0, CH	41.7, CH		
4	40.4, CH	37.6, CH		
5	133.6, C	107.8, C		
6	106.8, C	155.1, C		
7	132.4, CH	166.7, C		
8	129.9, CH	60.8, CH ₂		
9	169.3, C	26.1, CH ₃		
10	64.5, CH ₂	16.2, CH ₂		
11	11.8, CH ₃	12.7, CH ₃		
12	15.9, CH ₃	11.1, CH ₃		
1′	66.7, CH ₂	119.4, CH		
2'	31.7, CH ₂	141.7, CH		
3'	$20.3, CH_2$	27.3, CH ₂		
4′	14.1, CH ₃	14.2, CH ₃		

Table S1: Comparative ¹³C NMR data of compound 1 with similar compound

Figure S15: The IR spectrum of 2 (in KBr)

© 2022 ACG Publications. All rights reserved.

Figure S16: The HR-ESI-MS spectrum of 2 (in MeOH)

Figure S17: The ¹H NMR spectrum of 2 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S18: The ¹³C NMR spectrum of 2 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S19: The DEPT 135 spectrum of 2 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S20: The HSQC spectrum of 2 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S21: The HMBC spectrum of 2 (in CD₃OD)

© 2022 ACG Publications. All rights reserved.

Figure S22: The NOESY spectrum of 2 (in CD₃OD)

 $\ensuremath{\mathbb C}$ 2022 ACG Publications. All rights reserved.

Figure S23: Search report of SciFinder of 2

Position	HOOC HOOC HOOL HOOD	HO 1 2 4 6
	Compound 2 $\delta_{\rm C}$	Similar compound $\delta_{ m C}$
1	173.6, C	170.5, C
2	116.7, CH	120.5, CH
3	172.0, C	157.3, CH
4	90.7, C	42.7, C
5	63.9, CH ₂	74.8, CH
6	-	18.5, CH ₃
CH ₃ -3	11.8, CH ₃	-
CH ₃ -4	19.2 CH	22.9, CH ₃
	18.2, CH ₃	23.2, CH ₃

 Table S2: Comparative ¹³C NMR data of compound 2 with similar compound

Stigmast-5,28(29)-dien-3β-ol (3): Colorless crystal, ESI-MS *m/z* 417.4 ([M+H]⁺). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 0.72 (3H, s, CH₃-18), 0.86 (6H, d, J = 6.6 Hz ,CH₃-26,27), 0.97 (3H, d, J = 8.0 Hz, CH₃-21), 1.02 (3H, s, CH₃-19), 3.39 (1H, m, H-3), 5.04 (1H, dd, J = 18.0 Hz, H-29), 5.18 (1H, tt, J = 11.7 Hz, H-29), 5.33 (1H, brd, J = 4.8 Hz, H-6), 5.75 (1H, dd, J = 11.7,18.0 Hz, H-28); In addition, there are 26 alkane hydrogen signals $\delta_{\rm H} 1.2 \sim 2.3$; ¹³C-NMR (100 MHz, CD₃OD) $\delta_{\rm C}$: 37.7 (C-1), 32,3 (C-2), 72.5 (C-3), 43.1 (C-4), 142.3 (C-5), 122.5 (C-6), 33.3 (C-7), 30.1 (C-8), 51.8 (C-9), 37.4 (C-10), 22.2 (C-11), 41.3 (C-12), 43.5 (C-13), 58.2 (C-14), 25.4 (C-15), 29.3 (C-16), 56.7 (C-17), 12.3 (C-18), 19.4 (C-19), 38.6 (C-20), 18.1 (C-21), 33.1 (C-22), 29.7 (C-23), 57.4 (C-24), 29.9 (C-25), 17.2 (C-26), 19.9 (C-27), 116.1 (C-28), 139.2 (C-29).

β-sitosterol (4): C₂₉H₅₀O, colorless crystal, ESI-MS *m/z* 415.4 ([M+H]⁺). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 5.41 (1H, d, *J* = 5.3Hz, H-6), 3.58 (1H, m, H-3), 1.08 (3H, s, CH₃-19), 0.95 (3H, s, CH₃-18), 0.86 (3H, d *J* = 7.3Hz, CH₃-21), 0.84 (3H, d, *J* = 7.5Hz, CH₃-29), 0.79 (3H, s, CH₃-26), 0.73 (3H, s, CH₃-27); ¹³C-NMR (100 MHz, CDCl₃) $\delta_{\rm C}$:37.5 (C-1), 31.7 (C-2), 72.3 (C-3), 42.6 (C-4), 141.3 (C-5), 121.3 (C-6), 31.5 (C-7), 31.6 (C-8), 50.5 (C-9), 36.8 (C-10), 22.5 (C-11), 39.3 (C-12), 42.7 (C-13), 56.7 (C-14), 23.9 (C-15), 27.8 (C-16), 56.5 (C-17), 12.4 (C-18), 19.1 (C-19), 36.3 (C-20), 19.2 (C-21), 33.7 (C-22), 26.4 (C-23), 45.5 (C-24), 29.1 (C-25), 19.9 (C-26), 19.3 (C-27), 23.3 (C-28), 12.1 (C-29).

Carotene (5): C₃₅H₆₀O₆, white powder, ESI-MS *m/z* 577.4 ([M+H]⁺). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 5.32 (1H, br s, H-6), 5.12 (1H, d, *J* = 7.8 Hz, H-1'), 4.45 (1H, d, *J* = 11.4 Hz, H-6'), 4. 33 (1H, dd, *J* = 4.8, 11.4 Hz, H-6'), 4.29 (2H, m, H-3', 4'), 4.11 (1H, t, *J* = 7.8 Hz, H-2'), 4.08 (2H, m, H-3, 5'), 1.02 (3H, d, *J* = 6.0 Hz, H-21), 0.89 (3H, s, H-19), 0.81~0.93 (8H, m, H-9, 14, 26, 27), 0. 65 (3H, s, H-18); ¹³C-NMR (100 MHz, CD₃OD) $\delta_{\rm C}$:37.2 (C-1), 28.4 (C-2), 79.2 (C-3), 39.8 (C-4), 140.3 (C-5), 121.7 (C-6), 32.6 (C-7), 32.9 (C-8), 51.1 (C-9), 37.0 (C-10), 21.2 (C-11), 40.2 (C-12), 42.4 (C-13), 56.8 (C-14), 25.1 (C-15), 30.4 (C-16), 56.9 (C-17), 12.3 (C-18), 20.0 (C-19), 37.2 (C-20), 19.7 (C-21), 34.1 (C-22), 27.3 (C-23), 46.9 (C-24), 30.2 (C-25), 19.9 (C-26), 19.1 (C-27), 24.4 (C-28), 12.8 (C-29), 102.3 (C-1'), 75.2 (C-2'), 79.3 (C-3'), 72.5 (C-4'), 78.2 (C-5'), 63.4 (C-6').

Fraxetin (6): C₁₀H₈O₅, light brown powder, ESI-MS *m/z* 209.0 ([M+H]⁺). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 3.89 (3H, s, -OCH₃), 6.19 (1H, d, *J* = 9.5 Hz, H-3), 6.68 (1H, s, H-5), 7.81 (1H, d, *J* = 9.5 Hz, H-4); ¹³C-NMR (100 MHz, CD₃OD) $\delta_{\rm C}$: 162.3 (C-2), 111.2 (C-3), 145.3 (C-4), 99.6 (C-5), 145.7 (C-6), 139.3 (C-7), 132.6 (C-8), 139.2 (C-9), 110.7 (C-10),55.4 (-OCH₃).

p-coumaric acid (7): C₉H₈O₃, white powder, ESI-MS *m/z* 165.0552 ([M+H]⁺). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 6.20 (1H, d, *J* = 15.8 Hz, H-8), 6.73 (2H, d, *J* = 8.7 Hz, H-2, 6), 7.54 (2H, d, *J* = 8.7 Hz, H-3, 5), 7.58 (1H, d, *J* = 15.8 Hz, H-7); ¹³C-NMR (100 MHz, CD₃OD) $\delta_{\rm C}$: 159.8 (C-1), 115.4 (C-2), 132.1 (C-3), 126.3 (C-4), 132.1 (C-5), 115.4 (C-6), 145.3 (C-7), 114.2 (C-8), 169.6 (C-9).

cis-p-hydroxycinnamic acid (8): C₉H₈O₃, white powder, ESI-MS *m/z* 165.1 ([M+H]⁺). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 5.74 (1H, d, *J* = 12.9 Hz, H-8), 6.71 (2H, d, *J* = 8.7 Hz, H-2, 6), 6.77 (1H, d, *J* = 12.9 Hz, H-7), 7.35 (2H, d, *J* = 8.7 Hz, H-3, 5); ¹³C-NMR (100 MHz, CD₃OD) $\delta_{\rm C}$: 158.5 (C-1), 114.4 (C-2), 129.7 (C-3), 125.8 (C-4), 129.7 (C-5), 114.4 (C-6), 142.7 (C-7), 115.9 (C-8), 168.9 (C-9).

Ferulic acid (9): C₁₀H₁₀O₄, white powder, ESI-MS *m/z* 195.1 ([M+H]⁺). ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 3.89 (3H, s, -OCH₃), 7.60 (1H, d, *J* = 15.0 Hz, H-7), 7.18 (1H, d, *J* = 2.0 Hz, H-2), 7.06 (1H, dd, *J* = 8.0, 2.0 Hz, H-6), 6.81 (1H, d, *J* = 8.0 Hz, H-5), 6.31 (1H, d, *J* = 15 Hz, H-8); ¹³C-NMR (100 MHz, CD₃OD) $\delta_{\rm C}$: 126.4 (C-1), 110.3 (C-2), 149.7 (C-3), 149.1 (C-4), 114.5 (C-5), 122.6 (C-6), 145.5 (C-7), 115.1 (C-8), 169.9 (C-9), 55.0 (-OCH₃).