Supporting Information

Rec. Nat. Prod. 17:1 (2023) 189-194

A New Lignan from Leaves of Ormosia xylocarpa

Wenjuan Zhou ${ }^{\mathbf{1}}$, Yingxuan Quan ${ }^{\mathbf{1}}$, Yuanan Chen ${ }^{1}$,

Qin Wang ${ }^{\mathbf{2}}$, Xiaoxing Zou ${ }^{\mathbf{2}}$, Fangyou Chen ${ }^{\mathbf{3}}$ and Lin Ni ${ }^{\mathbf{1 2 *}}$

${ }^{1}$ Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
${ }^{2}$ Engineering Research Center of Natural Biological Resources Conservation \& Utilization of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
${ }^{3}$ College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China

	Page
Figure S1: Scifinder search report	5
Table S1: Comparison table for the NMR data with the most similar one	6
Figure S2: HR-ESI-MS spectrum of $\mathbf{1}($ xylocarpalignan B)	7
Figure S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ spectrum of $\mathbf{1}$ xylocarpalignan B)	8
Figure S4: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ spectrum of $\mathbf{1}$ (xylocarpalignan B)	9
Figure S5: DEPT $135\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ spectrum of $\mathbf{1}$ (xylocarpalignan B)	10
Figure S6: HSQC spectrum of $\mathbf{1}$ (xylocarpalignan B)	11
Figure S7: HMBC spectrum of $\mathbf{1}$ xylocarpalignan B)	12
Figure S7: HMBC spectrum of $\mathbf{1}$ xylocarpalignan B)(From $\delta_{\mathrm{H}} 2.9 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 4.9 \mathrm{ppm}\right)$	13
Figure S8:HMBC spectrum of $\mathbf{1}$ xylocarpalignan B)(From $\delta_{\mathrm{H}} 6.5 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 6.9 \mathrm{ppm}\right)$	14
Figure S9: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ (xylocarpalignan B)	15
Figure S11: NOESY spectrum of $\mathbf{1}$ (xylocarpalignan B)	16
Figure S12: The IR spectrum of compound $\mathbf{1}$ (xylocarpalignan B)	17
Figure S13: The CD spectrum of compound $\mathbf{1}$ (xylocarpalignan B)	18

*Corresponding author: E-mail: nilin_fjau@126.com

${ }^{1} H-N M R$ and ${ }^{13} C$-NMR data of compound 2-6

Hedyotol C (2): White power; $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{11}$; HR-ESI-MS m/z $607[\mathrm{M}+\mathrm{Na}]^{+} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , DMSO- d_{6}) $\delta_{\mathrm{H}}: 6.96\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.89\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 6.78$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}$), 6.75 (1H, d, $\left.J=1.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 6.72\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.68\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 6.64(2 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-2,6), 4.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime \prime}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 4.61(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-7), 4.15$ (2H, m, $\left.\mathrm{H}-9^{\prime}\right), 3.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime \prime}\right), 3.78\left(2 \mathrm{H}\right.$, overlapped, H-9), $3.76\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.74(6 \mathrm{H}, \mathrm{s}, 3,5-$ $\left.\mathrm{OCH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.63\left(1 \mathrm{H}, \mathrm{d}, J=11.2,4.8 \mathrm{~Hz}, \mathrm{H}-9^{\prime \prime} \mathrm{a}\right), 3.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9^{\prime \prime} \mathrm{b}\right), 3.05(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-8,8^{\prime}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 152.5(\mathrm{C}-3,5), 147.6$ (C-3'"), 146.9 (C-3'), 146.0 (C$\left.4^{\prime}\right), 145.3$ (C-4') , 137.0 (C-1), $135.3(\mathrm{C}-4), 133.0$ (C-1'), 132.2 (C-1"), 119.2 (C-6'), 118.7 (C-6"), 115.2 (C-5'), 114.7 (C-5' $), 110.9$ (C-2'), 110.4 (C-2') , 103.3 (C-2, 6), 87.1 (C-8"), 85.2 (C-7, 7'), 71.5 (C-7''), $71.3(\mathrm{C}-9), 71.0\left(\mathrm{C}-9^{\prime}\right), 60.2\left(\mathrm{C}-9^{\prime \prime}\right), 56.0\left(3,5-\mathrm{OCH}_{3}\right), 55.6\left(3^{\prime}-\mathrm{OCH}_{3}\right), 55.5\left(3^{\prime \prime}-\mathrm{OCH}_{3}\right), 53.9$ (C-8'), 53.9 (C-8).

Buddlenol C (3): Light yellow solid; $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{12}$; HR-ESI-MS m/z $615[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 6.89\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.75\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 6.72(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, H-5' $), 6.64(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,6), 6.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 4.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime \prime}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right)$, $4.61(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H}-7), 4.15-4.02(3 \mathrm{H}$, overlapped, H-8", $9 \mathrm{a}, 9 \mathrm{~b}), 3.79$ (2 H , overlapped, H-9), $3.76\left(9 \mathrm{H}, \mathrm{s}, 3^{\prime}, 5^{\prime}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.72\left(6 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{OCH}_{3}\right), 3.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9^{\prime \prime} \mathrm{a}\right), 3.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9^{\prime \prime} \mathrm{b}\right), 3.05$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8,8^{\prime}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{MSO}-d_{6}\right) \delta_{\mathrm{C}}: 152.6$ (C-3,5), 147.5 (C-3', 5'), 147.4 (C-3), 146.0 (C-4'), 136.8 (C-1), 134.9 (C-4), 134.3 (C-4' $), 132.5$ (C-1"), 132.2 (C-1'), 118.7 (C-6"), 115.2 (C-5') , 110.4 (C-2') , 104.2 (C-2, 6), 103.3 (C-2', $\left.6^{\prime}\right), 85.4$ (C-8"'), 85.2 (C-7, 7'), 72.4 (C-7''), 71.3 (C-9), 71.0 $\left(\mathrm{C}-9^{\prime}\right), 59.9\left(\mathrm{C}-9^{\prime \prime}\right), 56.0\left(3,5-\mathrm{OCH}_{3}\right), 55.9\left(3^{\prime}, 5^{\prime}-\mathrm{OCH}_{3}\right), 55.6\left(3^{\prime \prime}-\mathrm{OCH}_{3}\right), 53.8\left(\mathrm{C}-8^{\prime}\right), 53.5(\mathrm{C}-8)$.
(+)-Medioresinol (4): Prismatic crystals; $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7}$; HR-ESI-MS m/z $389[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 6.89(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-2), 6.75\left(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.72(1 \mathrm{H}$, $\mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-6), 6.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 4.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7,7{ }^{\prime}\right), 4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}, 9^{\prime} \mathrm{a}\right), 3.76(3 \mathrm{H}, \mathrm{s}$, $3^{\prime}-\mathrm{OCH}_{3}$), $3.75\left(6 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{OCH}_{3}\right), 3.72\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9 \mathrm{~b}, 9^{\prime} \mathrm{b}\right), 3.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8,8^{\prime}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- d_{6}) $\delta_{\mathrm{C}}: 147.9(\mathrm{C}-3,5), 147.5$ (C-3'), 145.9 (C-4'), $134.8(\mathrm{C}-4), 132.2$ (C-1'), 131.4 (C-1), 118.6 (C-6'), 115.1 (C-5'), 110.4 (C-2'), 103.6 (C-2, 6), 85.4 (C-7), $85.2\left(\mathrm{C}-7{ }^{\prime}\right), 71.1$ (C-9), 70.9 (C-9'), 56.0 $\left(3,5-\mathrm{OCH}_{3}\right), 55.6\left(3-\mathrm{OCH}_{3}\right), 53.8(\mathrm{C}-8), 53.5\left(\mathrm{C}-8^{\prime}\right)$.
(+)-Isolariciresinol (5): Light yellow power; $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{6}$; HR-ESI-MS m/z $383.2[\mathrm{M}+\mathrm{Na}]^{+} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 6.68\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.64\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 6), $6.35\left(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.74(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{H}-7), 3.70(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{OCH}_{3}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{OCH}_{3}\right), 3.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9^{\prime}\right), 3.17\left(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 2.68(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, $1.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 147.3\left(\mathrm{C}-3^{\prime}\right), 145.5(\mathrm{C}-5)$, 144.6 (C-4'), 144.1 (C-4), 137.2 (C-1'), 132.7 (C-2), 127.2 (C-1), 121.5 (C-6'), 116.3 (C-3), 115.3 (C$\left.5^{\prime}\right), 113.2\left(\mathrm{C}-2^{\prime}\right), 111.8(\mathrm{C}-6), 63.6(\mathrm{C}-9), 59.7\left(\mathrm{C}-9^{\prime}\right), 55.7\left(5-\mathrm{OCH}_{3}\right), 55.5\left(3^{\prime}-\mathrm{OCH}_{3}\right), 48.7\left(\mathrm{C}-7^{\prime}\right)$, 45.9 (C-8'), 38.1 (C-8), 32.3 (C-7).

5-Methoxy-(+)-isolariciresinol (6): White power; $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{7}$; HR-ESI-MS m/z $389[\mathrm{M}-\mathrm{H}]$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 6.60\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right), 6.35(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,6), 6.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 3.74(1 \mathrm{H}, \mathrm{d}, J=$
$10.4 \mathrm{~Hz}, \mathrm{H}-7), 3.70\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{OCH}_{3}\right), 3.68\left(6 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{OCH}_{3}\right), 3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9^{\prime}\right), 3.18(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7)$, $2.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.64\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 147.8$ (C-3,5), 145.6 (C-3'), 144.1 (C-4'), 136.2 (C-1), 133.7 (C-4), 132.6 (C-6'), 127.2 (C-1'), 116.2 (C-5'), $111.8\left(\mathrm{C}-2^{\prime}\right), 106.6(\mathrm{C}-2,6), 63.6(\mathrm{C}-9), 59.8\left(\mathrm{C}-9^{\prime}\right), 56.1\left(3,5-\mathrm{OCH}_{3}\right), 55.5\left(3^{\prime}-\mathrm{OCH}_{3}\right), 46.5\left(\mathrm{C}-7{ }^{\prime}\right)$, 45.7 (C-8'), 38.1 (C-8), 32.3 (C-7).
(+)-Lyoniresinol (7): White square crystal; $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{8}$; HR-ESI-MS m/z $419[\mathrm{M}-\mathrm{H}] ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 6.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right), 6.28(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2,6), 4.23(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-7), 3.76$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{OCH}_{3}\right), 3.62\left(6 \mathrm{H}, \mathrm{s}, 3,5-\mathrm{OCH}_{3}\right), 3.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9^{\prime}\right), 3.29\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{OCH}_{3}\right), 3.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ $9 \mathrm{a}), 3.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{~b}), 2.61(1 \mathrm{H}, \mathrm{dd}, J=14.8,4.4 \mathrm{~Hz}, \mathrm{H}-7), 2.42\left(1 \mathrm{H}, \mathrm{dd}, J=14.8,11.2 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right)$, $1.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 1.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 147.6(\mathrm{C}-3,5), 146.9(\mathrm{C}-$ $\left.5^{\prime}\right), 146.4\left(\mathrm{C}-3^{\prime}\right), 137.8\left(\mathrm{C}-1^{\prime}\right), 137.2(\mathrm{C}-4), 133.4$ (C-4'), 128.6 (C-1), $125.0\left(\mathrm{C}-2^{\prime}\right), 106.7$ (C-6'), $105.9(\mathrm{C}-2,6), 64.6(\mathrm{C}-9), 62.2\left(\mathrm{C}-9^{\prime}\right), 59.0\left(5^{\prime}-\mathrm{OCH}_{3}\right), 56.1\left(3,5-\mathrm{OCH}_{3}\right), 55.7\left(3^{\prime}-\mathrm{OCH}_{3}\right), 46.7\left(\mathrm{C}-8^{\prime}\right)$, 39.0 (C-8), 32.3 (C-7).

The samples (compounds 1-7) were configured to a concentration gradient of $0.500,0.250,0.100$. $0.050,0.025,0.010 \mathrm{mg} / \mathrm{mL}$ as sample solution. Vitamin C was used as a positive control group.The absorbance A were measured by a microplate reader. The effective concentration (IC_{50}) was calculated in IBM SPSS Statistics 26.0.

1. DPPH Free Radical Scavenging Test

DPPH was dissolved in methanol as working solution of $0.1 \mathrm{mmol} / \mathrm{L} .100 \mu \mathrm{~L}$ of DPPH working solution was added to $100 \mu \mathrm{~L}$ of sample solution in a 96 -well plate, shaking mixed, and protected from light at room temperature for 30 min . The absorbance value at 517 nm was A_{1}. Methanol was used to replace the DPPH working solution to deduct the background absorption of the sample solution, and the absorbance value was A_{2}. Replace the sample solution with the same volume of methanol as a negative control, and the absorbance value is A_{0}. Vitamin C was used as a positive control group. The calculation formula was: Clearance rate $=\left[1-\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right) / \mathrm{A}_{0}\right] \times 100 \%$.

2. ABTS $^{+}$Free Radical Scavenging Test

Mix 5 mL of $7 \mathrm{mmol} / \mathrm{L}$ ABTS aqueous solution and 5 mL of sample solution, and $2.45 \mathrm{mmol} / \mathrm{L}$ $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ aqueous solution, and placed it in the dark at $24{ }^{\circ} \mathrm{C}$ for 16 h to obtain ABTS^{+}solution. Take 1 mL of ABTS^{+}solution and dilute it with distilled water until the absorbance value at 734 nm was 0.700 ± 0.002. Take $40 \mu \mathrm{~L}$ of the sample solution and mixed it with $160 \mu \mathrm{~L}$ of ABTS^{+}solution in a $96-$ well plate, the absorbance value at 734 nm was A_{j}. Ultra-pure water was used to replace the ABTS^{+} working solution to deduct the background absorption of the sample solution, and the absorbance value was A_{i}. Replace the sample solution with the same volume of methanol as a negative control, and the absorbance value is A_{0}. The calculation formula was: Clearance rate $=\left[\mathrm{A}_{0^{-}}\left(\mathrm{A}_{j}-\mathrm{A}_{\mathrm{i}}\right)\right] / \mathrm{A}_{0}$ $\times 100 \%$.

3. OH Free Radical Scavenging Test

Mix 1.2 mL of $20 \mathrm{mmol} / \mathrm{L} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Na}$ and $4 \mathrm{~mL} 1.5 \mathrm{mmol} / \mathrm{L} \mathrm{FeSO}_{4}$ as working solution.Take $104 \mu \mathrm{~L}$ of working solution and mixed it with $40 \mu \mathrm{~L}$ sample solution in a $96-$ well plate, then added $56 \mu \mathrm{~L}$ of $6 \mathrm{mmol} / \mathrm{L} \mathrm{H}_{2} \mathrm{O}_{2}$ and placed it at $37^{\circ} \mathrm{C}$ water bath for 1 h , the absorbance value at 510 nm was A_{a}. Ultra-pure water was used to replace the $\mathrm{H}_{2} \mathrm{O}_{2}$ to deduct the background absorption of the sample solution, and the absorbance value was A_{b}. Replace the sample solution with the same volume of methanol as a negative control, and the absorbance value is A_{0}. The calculation formula was: Clearance rate $=\left[\mathrm{A}_{0}-\left(\mathrm{A}_{\mathrm{a}}-\mathrm{A}_{\mathrm{b}}\right)\right] / \mathrm{A}_{0} \times 100 \%$.

Structure Editor:

Click image to change structure or view detail.

Import CXF

Search

Search Type:
Oxact Structure
O Substructure
O Similarity

Show precision analysis

(c) ChemDraw

Launch a SciFinder/SciFinder ${ }^{n}$ substance or reaction search directly from the latest version of ChemDraw. Learn More

Select All Deselect All

1 of 9 Similarity Candidates Selected		Substances
$\square \geq 99$ (most similar)		3
\square - 95-98		45
Score: ≥ 99 1. 931109-33-0 Q ~1	Score: ≥ 99 2. 931109-34-1 Q ~1	Score: ≥ 99 3. 2143535-27-5 Q ~3
 Absolute stereochemistry.	 Absolute stereochemistry.	
$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{12}$ Benzenepropanol, β-[2,6-dimethoxy-4-[(1R,3aS,4R,6aS)-tetrahydro-4-(4-hydroxy-3,5-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan-1-yl]phenoxy]-4-hydroxy- γ, 3-dimethoxy, $(\beta S, \gamma S)$ - - Key Physical Properties Experimental Properties	$\mathrm{C}_{\mathbf{3 4}} \mathrm{H}_{\mathbf{4 2}} \mathrm{O}_{\mathbf{1 3}}$ Benzenepropanol, β-[2,6-dimethoxy-4-[(1R,3aS,4R,6aS) -tetrahydro-4-(4-hydroxy-3,5-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan-1-yl]phenoxy]-4-hydroxy- $\gamma, 3,5-$ trimethoxy-, $(\beta S, \gamma S)$ - - Key Physical Properties Experimental Properties	Absolute stereochemistry.,Rotation (-). $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{11}$ Benzenepropanol, β-[2,6-dimethoxy-4-[(1R,3aS,4R,6aS) -tetrahydro-4-(4-hydroxy-3-methoxyphenyl)-1H,3H-furo[3,4-c]furan-1-yl]phenoxy]-4-hydroxy- $\gamma, 3$ -dimethoxy-, ($\beta S, \gamma S$)- - Key Physical Properties

© 2022 ACG Publications. All rights reserved.

Table S1: Comparison table for the NMR data with the most similar one

Position	compound 1 (DMSO- d_{6})	most similar compound (chloroform- d)
	$\delta_{\mathrm{H}} \quad \delta_{\mathrm{C}}$	
1	132.2	134.1
2	$6.88(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}) \quad 115.2$	6.70 (s) 104.5
3	147.7	152.8
4	146.0	148.3
5	$6.72(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) \quad 110.4$	152.8
6	$6.75(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}) \quad 118.7$	6.70 (s) 104.5
7	$4.61(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}) \quad 85.2$	4.67 (d, $J=3.9 \mathrm{~Hz}) \quad 86.8$
8	$3.05(1 \mathrm{H}, \mathrm{m}) \quad 53.5$	3.09(m) 55.2
9	$4.14(2 \mathrm{H}, \mathrm{m}) \quad 71.3$	$\begin{aligned} & 4.24(\mathrm{dd}, J=7.1,15.0 \mathrm{~Hz}) \\ & 3.90 \text { (obscured) } \end{aligned}$
1^{\prime}	136.8	134.3
$2^{\prime}, 6^{\prime}$	$6.61(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}) \quad 103.2$	6.68 (s) 104.2
$3^{\prime}, 5^{\prime}$	152.6	152.0
4^{\prime}	134.7	136.7
$7{ }^{\prime}$	$4.64(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}) \quad 85.2$	$4.71(\mathrm{~d}, J=3.9 \mathrm{~Hz}) \quad 86.6$
8^{\prime}	$3.02(1 \mathrm{H}, \mathrm{m}) \quad 53.8$	$3.09(1 \mathrm{H}, \mathrm{m}) \quad 55.4$
9^{\prime}	3.77 (overlapped) 71.0	$\begin{array}{cl} 4.24(\mathrm{dd}, J=7.1,15.0 \mathrm{~Hz}) & 72.3 \\ 3.90 \text { (obscured) } & \end{array}$
$1^{\prime \prime}$	126.7	129.5
2 "	$6.54(1 \mathrm{H}, \mathrm{m}) \quad 104.9$	$6.98(\mathrm{~d}, J=1.5 \mathrm{~Hz}) \quad 111.9$
3 "	147.6	148.5
$4 \prime$	134.7	146.9
5"	147.6	$6.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}) \quad 115.1$
6 "	$6.54(1 \mathrm{H}, \mathrm{m}) \quad 104.9$	6.84 (dd, $J=1.5,7.5 \mathrm{~Hz}) \quad 121.7$
$7{ }^{\prime \prime}$	$4.39(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) \quad 82.6$	4.56 (d, $J=6.8 \mathrm{~Hz}) \quad 83.5$
8"	$4.19(1 \mathrm{H}, \mathrm{m}) \quad 84.9$	4.13 (m) 86.5
$9 \prime$	3.65 (overlapped) 3.47 (overlapped)	$\begin{array}{cc} 3.80 \text { (obscured), } & 60.6 \\ 3.52(\mathrm{dd}, J=2.9,11.7 \mathrm{~Hz}) & 60 . \end{array}$
$3-\mathrm{OCH}_{3}$	3.76 (3H, s) 55.6	3.82 s
$5-\mathrm{OCH}_{3}$		3.82 s - 57.4
$3^{\prime}, 5^{\prime}-\mathrm{OCH}_{3}$	$3.72(6 \mathrm{H}, \mathrm{s}) \quad 56.0$	3.84 s
$3{ }^{\prime \prime}-\mathrm{OCH}_{3}$	3.70 (3H, s) 55.9	3.86 s
5 "- OCH_{3}	3.70 (3H, s) 55.9	
$7{ }^{\prime \prime}-\mathrm{OCH}_{3}$	$3.71(3 \mathrm{H}, \mathrm{s}) \quad 56.6$	3.22 s

© 2022 ACG Publications. All rights reserved.
$\mathbf{x - 4 0}$. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{12} \mathrm{Na}^{+}(\mathrm{M}+\mathrm{Na})^{+} 651.24120$, found
651.24091.

Figure S2: HR-ESI-MS spectrum of $\mathbf{1}$ (xylocarpalignan B)
© 2022 ACG Publications. All rights reserved.

Figure S3: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \quad\right.$ DMSO $\left.-d_{6}\right)$ spectrum of $\mathbf{1}$ xylocarpalignan B)

Figure S4: ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, ~ D M S O-d_{6}\right)$ spectrum of $\mathbf{1}$ (xylocarpalignan B)

Figure S5:DEPT 135 ($100 \mathrm{MHz}, ~ D M S O-d_{6}$) spectrum of $\mathbf{1}$ (xylocarpalignan B)

Figure S6: HSQC spectrum of $\mathbf{1}$ (xylocarpalignan B)
© 2022 ACG Publications. All rights reserved.

Figure S7: HMBC spectrum of $\mathbf{1}$ (xylocarpalignan B)
© 2022 ACG Publications. All rights reserved.

Figure S8: HMBC spectrum of $\mathbf{1}$ (xylocarpalignan B)(From $\delta_{\mathrm{H}} 2.9 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 4.9 \mathrm{ppm}\right)$

Figure S9: HMBC spectrum of $\mathbf{1}$ (xylocarpalignan B)(From $\delta_{\mathrm{H}} 6.50 \mathrm{ppm}$ to $\delta_{\mathrm{H}} 6.92 \mathrm{ppm}$)

Figure S10: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ (xylocarpalignan B)

Figure S11: NOESY spectrum of 1 (xylocarpalignan B)

Figure S12: IR spectrum of $\mathbf{1}$ (xylocarpalignan B)
© 2022 ACG Publications. All rights reserved.

Figure S13: CD spectrum of $\mathbf{1}$ (xylocarpalignan B)

