## **Supporting Information**

## Rec. Nat. Prod. 17:1 (2023) 189-194

# A New Lignan from Leaves of Ormosia xylocarpa

# Wenjuan Zhou<sup>1</sup>, Yingxuan Quan<sup>1</sup>, Yuanan Chen<sup>1</sup>,

Qin Wang<sup>2</sup>, Xiaoxing Zou<sup>2</sup>, Fangyou Chen<sup>3</sup> and Lin Ni<sup>1,2\*</sup>

<sup>1</sup>Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

<sup>2</sup>Engineering Research Center of Natural Biological Resources Conservation & Utilization of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

<sup>3</sup>College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang,

Jiangxi 330004, China

| Table of Contents                                                                                                         | Page |
|---------------------------------------------------------------------------------------------------------------------------|------|
| Figure S1: Scifinder search report                                                                                        | 5    |
| <b>Table S1:</b> Comparison table for the NMR data with the most similar one                                              | 6    |
| Figure S2: HR-ESI-MS spectrum of 1 (xylocarpalignan B)                                                                    | 7    |
| <b>Figure S3:</b> <sup>1</sup> H-NMR (400MHz, DMSO- <i>d</i> <sub>6</sub> ) spectrum of <b>1</b> xylocarpalignan B)       | 8    |
| <b>Figure S4:</b> <sup>13</sup> C-NMR (100 MHz, DMSO- $d_6$ ) spectrum of <b>1</b> (xylocarpalignan B)                    | 9    |
| <b>Figure S5:</b> DEPT 135 (100 MHz, DMSO- $d_6$ ) spectrum of <b>1</b> (xylocarpalignan B)                               | 10   |
| Figure S6: HSQC spectrum of 1 (xylocarpalignan B)                                                                         | 11   |
| Figure S7: HMBC spectrum of 1 xylocarpalignan B)                                                                          | 12   |
| <b>Figure S7:</b> HMBC spectrum of <b>1</b> xylocarpalignan B)(From $\delta_{\rm H}$ 2.9 ppm to $\delta_{\rm H}$ 4.9 ppm) | 13   |
| <b>Figure S8:</b> HMBC spectrum of 1 xylocarpalignan B)(From $\delta_{\rm H}$ 6.5 ppm to $\delta_{\rm H}$ 6.9 ppm)        | 14   |
| <b>Figure S9:</b> <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>1</b> (xylocarpalignan B)                            | 15   |
| Figure S11: NOESY spectrum of 1 (xylocarpalignan B)                                                                       | 16   |
| Figure S12: The IR spectrum of compound 1 (xylocarpalignan B)                                                             | 17   |
| Figure S13: The CD spectrum of compound 1 (xylocarpalignan B)                                                             | 18   |

<sup>\*</sup>Corresponding author: E-mail: nilin\_fjau@126.com

<sup>© 2022</sup> ACG Publications. All rights reserved.

### <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data of compound **2-6**

*Hedyotol C (2):* White power;  $C_{31}H_{36}O_{11}$ ; HR-ESI-MS m/z 607 [M + Na]<sup>+</sup>; <sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\text{H}}$ : 6.96 (1H, d, J = 1.6 Hz, H-2'), 6.89 (1H, d, J = 2.0 Hz, H-2''), 6.78 (1H, m, H-5'), 6.75 (1H, d, J = 1.6 Hz, H-5''), 6.72 (1H, d, J = 8.0 Hz, H-6'), 6.68 (1H, d, J = 8.0 Hz, H-6''), 6.64 (2H, s, H-2, 6), 4.85 (1H, m, H-7''), 4.65 (1H, d, J = 4.0 Hz, H-7'), 4.61 (1H, d, J = 4.0 Hz, H-7), 4.15 (2H, m, H-9'), 3.98 (1H, m, H-8''), 3.78 (2H, overlapped, H-9), 3.76 (3H, s, 5''-OCH<sub>3</sub>), 3.74 (6H, s, 3, 5-OCH<sub>3</sub>), 3.71 (3H, s, 3''-OCH<sub>3</sub>), 3.63 (1H, d, J = 11.2, 4.8 Hz, H-9''a), 3.20 (1H, m, H-9''b), 3.05 (2H, m, H-8, 8'). <sup>13</sup>C-NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\text{C}}$ : 152.5 (C-3,5), 147.6 (C-3''), 146.9 (C-3'), 146.0 (C-4'), 145.3 (C-4''), 137.0 (C-1), 135.3(C-4), 133.0 (C-1'), 132.2 (C-1''), 119.2 (C-6'), 118.7 (C-6''), 115.2 (C-5'), 114.7 (C-5''), 110.9 (C-2'), 110.4 (C-2''), 103.3 (C-2, 6), 87.1 (C-8''), 85.2 (C-7, 7'), 71.5 (C-7''), 71.3 (C-9), 71.0 (C-9'), 60.2 (C-9''), 56.0 (3, 5-OCH<sub>3</sub>), 55.6 (3'-OCH<sub>3</sub>), 55.5 (3''-OCH<sub>3</sub>), 53.9 (C-8'), 53.9 (C-8).

*Buddlenol C* (3): Light yellow solid;  $C_{32}H_{38}O_{12}$ ; HR-ESI-MS m/z 615 [M + H]<sup>+</sup>; <sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\text{H}}$ : 6.89 (1H, d, *J* = 2.0 Hz, H-2'), 6.75 (1H, d, *J* = 2.0 Hz, H-2''), 6.72 (1H, d, *J* = 8.0 Hz, H-5''), 6.64 (2H, s, H-2, 6), 6.59 (2H, s, H-2', 6'), 4.81 (1H, m, H-7''), 4.65 (1H, d, *J* = 4.0 Hz, H-7'), 4.61 (1H, d, *J* = 4.0 Hz, H-7), 4.15-4.02 (3H, overlapped, H-8'', 9a, 9b), 3.79 (2H, overlapped, H-9), 3.76 (9H, s, 3', 5', 3''-OCH<sub>3</sub>), 3.72 (6H, s, 3, 5-OCH<sub>3</sub>), 3.75 (1H, s, H-9''a), 3.68 (1H, m, H-9''b), 3.05 (2H, m, H-8, 8'). <sup>13</sup>C-NMR (100 MHz, MSO-*d*<sub>6</sub>)  $\delta_{\text{C}}$ : 152.6 (C-3,5), 147.5 (C-3', 5'), 147.4 (C-3), 146.0 (C-4''), 136.8 (C-1), 134.9 (C-4), 134.3 (C-4''), 132.5 (C-1''), 132.2 (C-1'), 118.7 (C-6''), 115.2 (C-5''), 110.4 (C-2''), 104.2 (C-2, 6), 103.3 (C-2', 6'), 85.4 (C-8''), 85.2 (C-7, 7'), 72.4 (C-7''), 71.3 (C-9), 71.0 (C-9'), 59.9 (C-9''), 56.0 (3, 5-OCH<sub>3</sub>), 55.9 (3', 5'-OCH<sub>3</sub>), 55.6 (3''-OCH<sub>3</sub>), 53.8 (C-8'), 53.5 (C-8).

(+)-*Medioresinol* (*4*): Prismatic crystals;  $C_{21}H_{24}O_7$ ; HR-ESI-MS m/z 389 [M + H]<sup>+</sup>; <sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\rm H}$ : 6.89 (1H, d, *J* = 1.6 Hz, H-2), 6.75 (1H, dd, *J* = 8.0, 1.6 Hz, H-5'), 6.72 (1H, d, *J* = 8.0 Hz, H-6), 6.59 (2H, s, H-2', 6'), 4.60 (1H, m, H-7, 7'), 4.13 (2H, m, H-9a, 9'a), 3.76 (3H, s, 3'-OCH<sub>3</sub>), 3.75(6H, s, 3, 5-OCH<sub>3</sub>), 3.72 (1H, s, H-9b, 9'b), 3.05 (2H, m, H-8, 8'). <sup>13</sup>C-NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\rm C}$ : 147.9 (C-3, 5), 147.5 (C-3'), 145.9 (C-4'), 134.8(C-4), 132.2 (C-1'), 131.4 (C-1), 118.6 (C-6'), 115.1 (C-5'), 110.4 (C-2'), 103.6 (C-2, 6), 85.4 (C-7), 85.2(C-7'), 71.1 (C-9), 70.9 (C-9'), 56.0 (3, 5-OCH<sub>3</sub>), 55.6 (3-OCH<sub>3</sub>), 53.8 (C-8), 53.5 (C-8').

(+)-*Isolariciresinol* (*5*): Light yellow power; C<sub>20</sub>H<sub>24</sub>O<sub>6</sub>; HR-ESI-MS m/z 383.2 [M + Na]<sup>+</sup>; <sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\rm H}$ : 6.68 (1H, d, *J* = 8.0 Hz, H-5'), 6.64 (1H, d, *J* = 2.0 Hz, H-2'), 6.60 (1H, s, H-6), 6.35 (1H, dd, *J* = 8.0, 2.0 Hz, H-6'), 6.09 (1H, s, H-3), 3.74 (1H, d, *J* = 10.4 Hz, H-7), 3.70 (3H, s, 3'-OCH<sub>3</sub>), 3.69 (3H, s, 5-OCH<sub>3</sub>), 3.43 (2H, m, H-9'), 3.17 (2H, d, *J* = 4.8 Hz, H-7'), 2.68 (2H, m, H-9), 1.83 (1H, m, H-8), 1.61 (1H, m, H-8'). <sup>13</sup>C-NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\rm C}$ : 147.3 (C-3'), 145.5 (C-5), 144.6 (C-4'), 144.1 (C-4), 137.2 (C-1'), 132.7 (C-2), 127.2 (C-1), 121.5 (C-6'), 116.3 (C-3), 115.3 (C-5'), 113.2 (C-2'), 111.8 (C-6), 63.6 (C-9), 59.7 (C-9'), 55.7 (5-OCH<sub>3</sub>), 55.5 (3'-OCH<sub>3</sub>), 48.7 (C-7'), 45.9 (C-8'), 38.1 (C-8), 32.3 (C-7).

*5-Methoxy-*(+)*-isolariciresinol* (6): White power; C<sub>21</sub>H<sub>26</sub>O<sub>7</sub>; HR-ESI-MS m/z 389 [M - H]<sup>-</sup>; <sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\rm H}$ : 6.60 (1H, s, H-2'), 6.35 (2H, s, H-2, 6), 6.11 (1H, s, H-5'), 3.74 (1H, d, J =

10.4 Hz, H-7), 3.70 (3H, s, 3'-OCH<sub>3</sub>), 3.68 (6H, s, 3, 5-OCH<sub>3</sub>), 3.45 (2H, m, H-9'), 3.18 (2H, m, H-7), 2.69 (2H, m, H-9), 1.85 (1H, m, H-8), 1.64 (1H, m, H-8'). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta_C$ : 147.8 (C-3,5), 145.6 (C-3'), 144.1 (C-4'), 136.2 (C-1), 133.7 (C-4), 132.6 (C-6'), 127.2 (C-1'), 116.2 (C-5'), 111.8 (C-2'), 106.6 (C-2, 6), 63.6 (C-9), 59.8 (C-9'), 56.1 (3, 5-OCH<sub>3</sub>), 55.5 (3'-OCH<sub>3</sub>), 46.5 (C-7'), 45.7 (C-8'), 38.1 (C-8), 32.3 (C-7).

(+)-Lyoniresinol (7): White square crystal;  $C_{22}H_{28}O_8$ ; HR-ESI-MS m/z 419 [M - H]<sup>-</sup>; <sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\rm H}$ : 6.54 (1H, s, H-2'), 6.28 (2H, s, H-2, 6), 4.23 (1H, d, *J* = 5.2 Hz, H-7), 3.76 (3H, s, 3'-OCH<sub>3</sub>), 3.62 (6H, s, 3, 5-OCH<sub>3</sub>), 3.46 (2H, m, H-9'), 3.29 (3H, s, 5'-OCH<sub>3</sub>), 3.23 (1H, m, H-9a), 3.16 (1H, m, H-9b), 2.61 (1H, dd, *J* = 14.8, 4.4 Hz, H-7), 2.42 (1H, dd, *J* = 14.8, 11.2 Hz, H-7'), 1.83 (1H, m, H-8), 1.42 (1H, m, H-8'). <sup>13</sup>C-NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta_{\rm C}$ : 147.6 (C-3,5), 146.9 (C-5'), 146.4 (C-3'), 137.8 (C-1'), 137.2 (C-4), 133.4 (C-4'), 128.6 (C-1), 125.0 (C-2'), 106.7 (C-6'), 105.9 (C-2, 6), 64.6 (C-9), 62.2 (C-9'), 59.0 (5'-OCH<sub>3</sub>), 56.1 (3, 5-OCH<sub>3</sub>), 55.7 (3'-OCH<sub>3</sub>), 46.7 (C-8'), 39.0 (C-8), 32.3 (C-7).

#### Bioassay for Antioxidant Activity

The samples (compounds 1-7) were configured to a concentration gradient of 0.500, 0.250, 0.100. 0.050, 0.025, 0.010 mg/mL as sample solution. Vitamin C was used as a positive control group. The absorbance A were measured by a microplate reader. The effective concentration (IC<sub>50</sub>) was calculated in IBM SPSS Statistics 26.0.

#### 1. DPPH Free Radical Scavenging Test

DPPH was dissolved in methanol as working solution of 0.1mmol/L. 100  $\mu$ L of DPPH working solution was added to 100 $\mu$ L of sample solution in a 96-well plate, shaking mixed, and protected from light at room temperature for 30 min. The absorbance value at 517nm was A<sub>1</sub>. Methanol was used to replace the DPPH working solution to deduct the background absorption of the sample solution, and the absorbance value was A<sub>2</sub>. Replace the sample solution with the same volume of methanol as a negative control, and the absorbance value is A<sub>0</sub>. Vitamin C was used as a positive control group. The calculation formula was: Clearance rate = [1- (A<sub>1</sub>-A<sub>2</sub>)/A<sub>0</sub>] ×100%.

#### 2. ABTS<sup>+</sup> Free Radical Scavenging Test

Mix 5mL of 7mmol/L ABTS aqueous solution and 5mL of sample solution, and 2.45mmol/L  $K_2S_2O_8$  aqueous solution, and placed it in the dark at 24 °C for 16 h to obtain ABTS<sup>+</sup> solution. Take 1mL of ABTS<sup>+</sup> solution and dilute it with distilled water until the absorbance value at 734nm was  $0.700\pm0.002$ . Take 40µL of the sample solution and mixed it with 160µL of ABTS<sup>+</sup> solution in a 96-well plate, the absorbance value at 734nm was A<sub>j</sub>. Ultra-pure water was used to replace the ABTS<sup>+</sup> working solution to deduct the background absorption of the sample solution, and the absorbance value was A<sub>i</sub>. Replace the sample solution with the same volume of methanol as a negative control, and the absorbance value is A<sub>0</sub>. The calculation formula was: Clearance rate = [A<sub>0</sub>- (A<sub>j</sub> -A<sub>i</sub>)]/A<sub>0</sub> ×100%.

#### 3. • OH Free Radical Scavenging Test

Mix 1.2mL of 20mmol/L C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>Na and 4mL 1.5mmol/L FeSO<sub>4</sub> as working solution.Take 104µL of working solution and mixed it with 40µL sample solution in a 96-well plate, then added 56µL of 6mmol/L H<sub>2</sub>O<sub>2</sub> and placed it at 37 °C water bath for 1 h, the absorbance value at 510nm was A<sub>a</sub>. Ultra-pure water was used to replace the H<sub>2</sub>O<sub>2</sub> to deduct the background absorption of the sample solution, and the absorbance value was A<sub>b</sub>. Replace the sample solution with the same volume of methanol as a negative control, and the absorbance value is A<sub>0</sub>. The calculation formula was: Clearance rate =  $[A_0 - (A_a - A_b)]/A_0 \times 100\%$ .

### Structure Editor:



Click image to change structure or view detail.

### Import CXF



# Search Type:

- O Exact Structure
- Substructure
- Similarity

Show precision analysis

## ChemDraw'

Launch a SciFinder/SciFinder<sup>n</sup> substance or reaction search directly from the latest version of ChemDraw. Learn More



| Desition                          | compound <b>1</b> (DMSO- <i>d</i> <sub>6</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | most similar compound (chloroform- <i>d</i> )  |       |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------|-------|
| POSITION                          | <i>δ</i> н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>δ</b> c         | $\delta_{ m H}$                                | δc    |
| 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 132.2              |                                                | 134.1 |
| 2                                 | 6.88 (1H, d, J = 2.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 115.2              | 6.70 (s)                                       | 104.5 |
| 3                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147.7              |                                                | 152.8 |
| 4                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 146.0              |                                                | 148.3 |
| 5                                 | 6.72 (1H, d, J = 8.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.4              |                                                | 152.8 |
| 6                                 | 6.75 (1H, dd, J = 8.0, 2.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.7              | 6.70 (s)                                       | 104.5 |
| 7                                 | 4.61 (1H, d, J = 3.6 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85.2               | 4.67 (d, <i>J</i> =3.9 Hz)                     | 86.8  |
| 8                                 | 3.05 (1H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.5               | 3.09(m)                                        | 55.2  |
| 9                                 | 4.14 (2H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71.3               | 4.24 (dd, J = 7.1, 15.0 Hz)<br>3.90 (obscured) | 72.3  |
| 1'                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 136.8              |                                                | 134.3 |
| 2', 6'                            | 6.61 (2H, d, <i>J</i> = 2.0Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103.2              | 6.68 (s)                                       | 104.2 |
| 3', 5'                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152.6              |                                                | 152.0 |
| 4'                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 134.7              |                                                | 136.7 |
| 7′                                | 4.64 (1H, d, <i>J</i> = 3.6 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.2               | 4.71 (d, <i>J</i> = 3.9 Hz)                    | 86.6  |
| 8'                                | 3.02 (1H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.8               | 3.09 (1H, m)                                   | 55.4  |
| 9′                                | 3.77 (overlapped)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71.0               | 4.24 (dd, J = 7.1, 15.0 Hz)<br>3.90 (obscured) | 72.3  |
| 1′′                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 126.7              |                                                | 129.5 |
| 2″                                | 6.54 (1H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104.9              | 6.98 (d, $J = 1.5$ Hz)                         | 111.9 |
| 3″                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147.6              |                                                | 148.5 |
| 4"                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 134.7              |                                                | 146.9 |
| 5"                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147.6              | 6.81 (d. $J = 7.5$ Hz)                         | 115.1 |
| 6"                                | 6.54 (1H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104.9              | 6.84 (dd. J = 1.5, 7.5 Hz)                     | 121.7 |
| 7"                                | 4.39 (1H. d. J = 6.8 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82.6               | 4.56 (d. J = 6.8 Hz)                           | 83.5  |
| 8″                                | 4.19 (1H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84.9               | 4.13 (m)                                       | 86.5  |
| 0                                 | 3.65 (overlapped)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 3.80 (obscured).                               |       |
| 9″                                | 3.47 (overlapped)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59.8               | 3.52  (dd.  J = 2.9, 11.7  Hz)                 | 60.6  |
| 3-OCH <sub>3</sub>                | 3.76 (3H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.6               | 3.82 s                                         | 57.4  |
| 5-OCH <sub>3</sub>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 3.82 s                                         | 57.4  |
| 3', 5'-OCH <sub>3</sub>           | 3.72 (6H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56.0               | 3.84 s                                         | 56.8  |
| 3"-OCH <sub>3</sub>               | 3.70 (3H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.9               | 3.86 s                                         | 57.0  |
| 5"-OCH <sub>3</sub>               | 3.70 (3H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.9               |                                                |       |
| 7"-OCH <sub>3</sub>               | 3.71 (3H, s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56.6               | 3.22 s                                         | 58.1  |
|                                   | $H_{3}CO$<br>$H_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3}CO$<br>$M_{3$ | 0010               | <u>3" 2</u> " OCH                              | 0011  |
|                                   | нот                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | $HO \xrightarrow{4''}$ $1'' \xrightarrow{7''}$ |       |
|                                   | $5'' = 6'' \qquad 8'' \qquad OCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | $5'' = _{6''} $ $8'' O _{5'} O CH_3$           |       |
|                                   | H <sub>3</sub> CO HO-9" 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | $H_3CO HO - 5'' 4'$                            |       |
|                                   | H <sub>3</sub> CO-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                |       |
|                                   | 2' 1' <u>7' H</u> 8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | $2^{-1}$ $7$                                   |       |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\int_{\gamma}$    | $0 \sqrt{\frac{8}{7}}$                         |       |
| 9 $H$ $1$ $6$ $9$ $H$ $1$ $5$ $-$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                |       |
| $2\sqrt[2]{5}$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | $\sqrt{4}$                                     |       |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\overline{)}_{3}$ | $H_3CO'^3$                                     | он    |
|                                   | H <sub>3</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | й о́н              |                                                |       |

Table S1: Comparison table for the NMR data with the most similar one

**x-40.** HRMS (ESI) m/z calcd for  $C_{33}H_{40}O_{12}Na^+$  (M+Na)<sup>+</sup> 651.24120, found





Figure S2: HR-ESI-MS spectrum of 1 (xylocarpalignan B)



**Figure S3:**<sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>) spectrum of **1** xylocarpalignan B)



**Figure S4:** <sup>13</sup>C-NMR (100 MHz, DMSO-*d*<sub>6</sub>) spectrum of **1** (xylocarpalignan B)



Figure S5:DEPT 135 (100 MHz, DMSO-*d*<sub>6</sub>) spectrum of **1** (xylocarpalignan B)



Figure S6: HSQC spectrum of 1 (xylocarpalignan B)



Figure S7: HMBC spectrum of 1 (xylocarpalignan B)



**Figure S8:** HMBC spectrum of **1** (xylocarpalignan B)(From  $\delta_{\rm H}$  2.9 ppm to  $\delta_{\rm H}$  4.9 ppm)



**Figure S9:** HMBC spectrum of **1** (xylocarpalignan B)(From  $\delta_{\rm H}$  6.50 ppm to  $\delta_{\rm H}$  6.92 ppm)



Figure S10: <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 1 (xylocarpalignan B)



Figure S11: NOESY spectrum of 1 (xylocarpalignan B)



Figure S12: IR spectrum of 1 (xylocarpalignan B)



Figure S13: CD spectrum of 1 (xylocarpalignan B)