Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

Secondary Metabolites from Marine-Derived Fungus

Aspergillus carneus GXIMD00519

Chun-Ju Lu[#], Zhen-Zhou Tang[#], Zhi-Wei Su, Hai-Yan Li, Geng-Si Zhang, Cheng-Hai Gao ¹, Yong-Hong Liu ^{1*} and Xin-Ya Xu ^{1*}

Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P.R.China

Table of ContentsPa	age
Figure S1: HR-ESI-MS spectrum of 1 (carneusin A)	2
Figure S2: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 1 (carneusin A)	3
Figure S3: ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of 1 (carneusin A)	4
Figure S4: HSQC spectrum of 1 (carneusin A)	5
Figure S5: HSQC spectrum of 1 (carneusin A) (From $\delta_c 18$ ppm to $\delta_c 28$ ppm)	6
Figure S6: HSQC spectrum of 1 (carneusin A) (From $\delta_c 100$ ppm to $\delta_c 116$ ppm)	7
Figure S7: HMBC spectrum of 1 (carneusin A)	8
Figure S8: HMBC spectrum of 1 (carneusin A) (From δ_C 15 ppm to δ_C 70 ppm)	9
Figure S9: HMBC spectrum of 1 (carneusin A) (From δ_C 100 ppm to δ_C 120 ppm)	10
Figure S10: HMBC spectrum of 1 (carneusin A) (From δ_C 125 ppm to δ_C 195 ppm)	11
Figure S11: ¹ H- ¹ H COSY spectrum of 1 (carneusin A)	12
Figure S12: NOESY spectrum of 1 (carneusin A)	13
Figure S13: HR-ESI-MS spectrum of 2 (carneusin B)	14
Figure S14: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 2 (carneusin B)	15
Figure S15: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 2 (carneusin B)	16
Figure S16: HSQC spectrum of 2 (carneusin B)	17
Figure S17: HMBC spectrum of 2 (carneusin B)	18
Figure S18 : HMBC spectrum of 2 (carneusin B) (From δ_C 5 ppm to 45 ppm)	19
Figure S19: HMBC spectrum of 2 (carneusin B) (From $\delta_{\rm C}$ 120 ppm to 190 ppm)	20
Table S1 : Relative free energies ^a and equilibrium populations ^b of conformers for (1'S, 4'S, 5'S)-1 ^c	21
Figure S20: . The optimized structures (left) and the calculated CD spectra of conformers (1'S,	21
4'S, 5'S)-1 in MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.22 \text{ eV}$	
Table S2 : Relative free energies ^a and equilibrium populations ^b of conformers for $(6S)$ -2 ^c	22
Figure S21: The optimized structures (left) and the calculated CD spectra of conformers (6S)-2 in	23
MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.3 \text{ eV}$	
Figure S22: DP4+ probabilities (%) for conformers (6S)-2 (isomer 1) and (6R)-2 (isomer 2)	24
Figure S23: The Scifinder searching results of compound 1	25
Table S3: The structural comparison of similar compounds with 1	26
Figure S24: The Scifinder searching results of compound 2	27
Table S4: The structural comparison of similar compounds with 2 2	28
Table S5: The NMR data comparison of similar compounds with 1	29

Figure S1: HR-ESI-MS spectrum of 1 (carneusin A)

Figure S2: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **1** (carneusin A)

Figure S3: ¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum of **1** (carneusin A)

Figure S4: HSQC spectrum of 1 (carneusin A)

Figure S5: HSQC spectrum of **1** (carneusin A) (From $\delta_C 18$ ppm to $\delta_C 28$ ppm)

Figure S6: HSQC spectrum of **1** (carneusin A) (From δ_c 100 ppm to δ_c 116 ppm)

Figure S7: HMBC spectrum of 1 (carneusin A)

Figure S8: HMBC spectrum of **1** (carneusin A) (From δ_C 15 ppm to δ_C 70 ppm)

Figure S9: HMBC spectrum of **1** (carneusin A) (From δ_C 100 ppm to δ_C 120 ppm)

Figure S10: HMBC spectrum of 1 (carneusin A) (From $\delta_{\rm C}$ 125 ppm to $\delta_{\rm C}$ 195 ppm)

Figure S11: ¹H-¹H COSY spectrum of 1 (carneusin A)

Figure S12: NOESY spectrum of 1 (carneusin A)

Figure S13: HR-ESI-MS spectrum of 2 (carneusin B)

Figure S14: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **2** (carneusin B)

Figure S15: ¹³C-NMR (150 MHz, CDCl₃) spectrum of 2 (carneusin B)

Figure S16: HSQC spectrum of 2 (carneusin B)

Figure S17: HMBC spectrum of 2 (carneusin B)

Figure S18: HMBC spectrum of 2 (carneusin B) (From δ_C 5 ppm to 45 ppm)

Figure S19: HMBC spectrum of **2** (carneusin B) (From $\delta_{\rm C}$ 120 ppm to 190 ppm)

Table S1: Relative free energies ^a and equilibrium populations ^b of	conformers for (1'S, 4'S, 5'S)-1 ^c
---	---

conformer	$\Box G$	P (%)
1 a	0.00	100.00

^a B3LYP/6-31G(d), in kcal/mol. ^b From $\Box G$ values at 298.15 K. ^c in MeOH, no imaginary frequency

Figure S20: . The optimized structures (left) and the calculated CD spectra of conformers (1'S 4'S, 5'S)-1 in MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.22 \text{ eV}$

conformer	ΔG	P (%)	
2 a	0.00	69.13	
2 b	1.03	11.98	
_			
2c	1.15	9.86	
2d	1.20	9.03	
2u	1.20	7.03	

Table S2: Relative free energies^a and equilibrium populations^b of conformers for (65)- 2^{c}

^a B3LYP/6-31G(d), in kcal/mol. ^b From $\Box G$ values at 298.15 K. ^c in MeOH, no imaginary frequency

28 Δε 14

0

-14

-28

Δε 7

0

-7

-15 200 220 240

200

220 240 260 280

320

320

(6*S*)-**2**b

(6*S*)-**2**c

Figure S21: The optimized structures (left) and the calculated CD spectra of conformers (6*S*)-2 in MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.3 \text{ eV}$

		DP4+	📶 89. 54 %	d 10. 46%
Nuclei	sp2?	xperimenta	Isomer 1	Isomer 2
С	х	174.92	173.925	173.405
С		36.16	40.254	39.546
С		34.62	36.852	35.959
С	х	179	182.141	181.509
С		15.92	15.798	15.255
С	х	129.45	134.359	134.334
С	х	162.3	168.816	168.733
С	х	128.81	106.88 106.	
С		52.72	53.321	53.359

Figure S22: DP4+ probabilities (%) for conformers (6*S*)-**2** (isomer 1) and (6*R*)-**2** (isomer 2)

Figure S23 : The Scifinder searching results of compound 1

Table S3: The structural comparison of similar comounds with 1

© 2022 ACG Publications. All rights reserved.

SciFinder® Page 1 Score: 91 Score: 91 Score: 91 824393-57-9 2165716-67-4 2307909-20-0 Double bond geometry as shown., Rotation (-)., Absolute stereochemistry. Absolute stereochemistry., Double bond geometry as shown. Absolute stereochemistry., Double bond geometry unknown. C₁₀ H₁₅ N O₅ 2-Butenoic acid, 4-[[(1S)-1-(methoxycarbonyl)-2-methylpropyl]amino]-4-oxo-, (2Z)-C₁₀ H₁₅ N O₅ 2-Butenoic acid, 4-[[(1S)-1-(methoxycarbonyl)-2-C10 H15 N O5 INDEX NAME NOT YET ASSIGNED methylpropyl]amino]-4-oxo-, (2E)-Key Physical Properties: Key Physical Properties: Key Physical Properties: Molecular Weight Molecular Weight 229.23 Molecular Weight 229.23 Boiling Point (Predicted) Boiling Point (Predicted) 229.23 Value: 432.1±45.0 °C | Condition: Press: 760 Boiling Point (Predicted) Value: 432.1±45.0 °C | Condition: Press: 760 Value: 432.1±45.0 °C | Condition: Press: 760 Torr Torr Density (Predicted) Torr Density (Predicted) Value: 1.193±0.06 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr Value: 1.193±0.06 g/cm3 | Condition: Temp: 20 Density (Predicted) C Press: 760 Torr Value: 1.193±0.06 g/cm3 | Condition: Temp: 20 pKa (Predicted) °C Press: 760 Torr pKa (Predicted) Value: 2.78±0.25 | Condition: Most Acidic Temp. 25 °C Value: 3.47±0.10 | Condition: Most Acidic Temp: pKa (Predicted) Value: 3.47±0.10 | Condition: Most Acidic Temp: 25 °C 25 °C Related Info: Related Info: Related Info: ~ 3 References ~ 0 References Reactions ~ 0 References ~ 1 Commercial Sources ~ 1 Commercial Sources Score: 90 Score: 90 Score: 90 124326-04-1 124326-05-2 65306-00-5 Double bond geometry as shown., Absolute stereochemistry. Double bond geometry as shown., Absolute stereochemistry. C₉ H₁₅ N O₅ Butanoic acid, 4-[(1-carboxyethyl)amino]-3methyl-4-oxo-, 1-methyl ester C₈ H₁₁ N O₅ 2-Butenoic acid, 4-[[(1*S*)-2-methoxy-1-methyl-2-C₈ H₁₁ N O₅ 2-Butenoic acid, 4-[(2-methoxy-1-methyl-2-Key Physical Properties: oxoethyl]amino]-4-oxo-, (2Z)oxoethyl)amino]-4-oxo-, [S-(E)]- (9Cl) Molecular Weight Key Physical Properties: Key Physical Properties: Boiling Point (Predicted) Value: 438.1±30.0 °C | Condition: Press: 760 Molecular Weight Molecular Weight 201.18 201.18 Boiling Point (Predicted) Value: 429.0±45.0 °C | Condition: Press: 760 Torr Boiling Point (Predicted) Value: 429.0±45.0 °C | Condition: Press: 760 Density (Predicted) Value: 1.194±0.06 g/cm3 | Condition: Temp: 20 Torr Torr Density (Predicted) Density (Predicted) °C Press: 760 Torr Value: 1.268±0.06 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 1.268±0.06 g/cm3 | Condition: Temp: 20 Value: 3.52±0.10 | Condition: Most Acidic Temp: 25 °C °C Press: 760 Torr pKa (Predicted) pKa (Predicted) Value: 2.79±0.25 | Condition: Most Acidic Temp: 25 °C Value: 3.47±0.10 | Condition: Most Acidic Temp: Related Info: 25 °C ~ 2 References ~ 2 Commercial Sources Related Info: Related Info: ~ 5 References ~ 1 References Reactions ~ 5 Commercial Sources ~ 1 Commercial Sources

Copyright © 2022 American Chemical Society (ACS). All Rights Reserved.

Figure S24 : The Scifinder searching results of compound 2

Table S4 : The structural comparison of similar compounds with ${\bf 2}$

Position	Compound 1 ^a		nidurufin ^{a, b}		2'-epinidu	urufin ^c		
		(CAS NO. 28458-23-3)		(CAS NO. 28458-23-3) (CAS N		(CAS NO	IO. 93922-50-0)	
	δ _H	$\delta_{\rm C}$ (mult.)	δ _H	$\delta_{\rm C}$ (mult.)	δ _H	$\delta_{\rm C}$ (mult.)		
1	-	158.1 (C)	-	159.8 (C)	NMR dat	a is not		
2	-	116.1 (C)	-	115.0 (C)	available			
3	-	158.7 (C)	-	158.4 (C)				
4	6.85, <i>s</i>	107.2 (CH)	6.85, s	107.4 (CH)				
4a	-	133.0 (C)	-	134.6 (C)				
5	6.94, <i>d</i> , <i>J</i> = 2.4	109.4 (CH)	6.97, s	108.9 (CH)				
6	-	166.2 (C)	-	164.2 (C)				
7	6.43, <i>d</i> , <i>J</i> = 2.4	107.9 (CH)	6.49, s	108.0 (CH)				
8	-	164.4 (C)	-	165.2 (C)				
8a	-	108.0 (C)	-	108.5 (C)				
9	-	188.3 (C)	-	188.6 (C)				
9a	-	108.4 (C)	-	108.2 (C)				
10	-	180.6 (C)	-	180.5 (C)				
10a	-	134.6 (C)	-	133.1 (C)				
1'	5.09, d, J = 3.0	65.7 (CH)	5.36,	70.7 (CH)				
			overlapped					
2'	2.32, ddt , $J =$	21.9 (CH ₂)	3.75, m	63.5 (CH)				
	17.3, 8.3, 3.8							
	1.45, <i>d</i> , <i>J</i> =							
	13.6							
3'	1.64, <i>d</i> , <i>J</i> =	23.5 (CH ₂)	2.16, m	30.2 (CH ₂)				
	13.0							
	1.53, td, J =		1.82, m					
	13.0, 3.2		1.55					
4'	3.55, t, J = 2.8	66.7 (CH)	1.57, m	22.7 (CH)				
5'	-	102.6 (C)	-	101.5 (C)				
6'	1.49, <i>s</i>	24.0 (CH ₃)	1.54, s	27.2 (CH ₃)				

Table S5: The NMR data comparison of similar compounds with 1

^a in DMSO-*d*₆.

^b reference: X. W. Luo, H. M. Lu, X. Q. Chen, X. F. Zhou, C. H. Gao and Y. H. Liu (2020). Secondary metabolites and their biological activities from the sponge derived fungus *Aspergillus versicolor*, *Chem. Nat. Comp.* **56**, 716-719.

^c reference: R. A. Murphy Jr and M. P. Cava (1984). Stereochemistry of nidurufin: synthesis of 6,8-dideoxynidurufin and 6,8-dideoxyepinidurufin, *J. Am. Chem. Soc.* **106**, 7630-7632.