Supporting Information

Rec. Nat. Prod. 17:2 (2023) 232-240

A New Monoterpene Alkaloid From the Stems of Rauvolfia vomitoria

Kailing Yang, Tao Yang, Xiaolei Li, Ruixi Zhou,

Rongkun Miao, Yuyan Guan, Yang Teng,

Guanqun Zhan and Zengjun Guo

¹ School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China

2	School of Pharmacy, .	Jiamuisi	University,	Jiamusi	154007,	<i>P. 1</i>	R.	China
---	-----------------------	----------	-------------	---------	---------	-------------	----	-------

Table of Contents	Page	
Figure S1: HR-ESI-MS spectrum of 1		
Figure S2: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 1		
Figure S3: HSQC spectrum of 1	5	
Figure S4: HMBC spectrum of 1		
Figure S5: HMBC spectrum of 1 (From $\delta_{\rm C}$ 115 ppm to $\delta_{\rm C}$ 160 ppm)		
Figure S6: HMBC spectrum of 1 (From $\delta_{\rm C}$ 25 ppm to $\delta_{\rm C}$ 90 ppm)		
Figure S7: ¹ H- ¹ H COSY spectrum of 1		
Figure S8: ¹ H- ¹ H COSY spectrum of 1(From $\delta_{\rm H}$ 1.5 ppm to $\delta_{\rm H}$ 4.0 ppm)		
Figure S9: NOESY spectrum of 1		
Figure S10: FT-IR spectrum of 1		
Figure S11: UV Spectrum of 1		
Figure S12: Scifinder search of new compound 1		
Figure S13: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 2		
Figure S14: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 3		
Figure S15: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 4		
Figure S16: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) Spectrum of 5		
Figure S17: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 6		
Figure S18: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 7		
Figure S19: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 8		
Figure S20: ¹ H-NMR (600 MHz, CD ₃ OD) and ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of 9		
Figure S21: The inhibition rate curves of acetylcholinesterase inhibition activity		

Figure S22: The inhibition rate curves of α -glucosidase inhibitory activity	18
Figure S23: The inhibition rate curves of DPPH radical scavenging activity	19
Figure S24: The inhibition rate curves of hydroxyl radical scavenging activity	19
Figure S25: The inhibition rate curves of FRAP activity	20
Table S1: The inhibitory rates of compounds 1–9 at the test concentrations	21
Table S2: Optical rotation values of 4–6	21

Figure S1: HR-ESI-MS spectrum of 1

Figure S2: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of 1

© 2022 ACG Publications. All rights reserved.

Figure S5: HMBC spectrum of 1 (From $\delta_{\rm C}$ 115 ppm to $\delta_{\rm C}$ 160 ppm)

Figure S6: HMBC spectrum of 1 (From δ_C 25 ppm to δ_C 90 ppm) © 2022 ACG Publications. All rights reserved.

Figure S7: ¹H-¹H COSY spectrum of 1

Figure S8: ¹H-¹H COSY spectrum of **1**(From $\delta_{\rm H}$ 1.5 ppm to $\delta_{\rm H}$ 4.0 ppm) © 2022 ACG Publications. All rights reserved.

Figure S9: NOESY spectrum of 1

Figure S10: FT-IR spectrum of **1** © 2022 ACG Publications. All rights reserved.

Copyright © 2022 American Chemical Society (ACS). All Rights Reserved. Internal use only. Redistribution is subject to the terms of your SciFinder^a License Agreement and CAS information Use Policies.

Figure S12: Scifinder search of new compound 1

Figure S13: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of 2

Figure S14: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of 3

Figure S15: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of 4

© 2022 ACG Publications. All rights reserved.

Figure S16: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of 5 © 2022 ACG Publications. All rights reserved.

© 2022 ACG Publications. All rights reserved.

Figure S18: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of 7

© 2022 ACG Publications. All rights reserved.

Figure S19: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of **8** © 2022 ACG Publications. All rights reserved.

Figure S20: ¹H-NMR (600 MHz, CD₃OD) and ¹³C-NMR (150 MHz, CD₃OD) spectrum of **9** © 2022 ACG Publications. All rights reserved.

Figure S21: The inhibition rate curves of acetylcholinesterase inhibition activity

Figure S22: The inhibition rate curves of α-glucosidase inhibitory activity

Figure S23: The inhibition rate curves of DPPH radical scavenging activity

Figure S24: The inhibition rate curves of hydroxyl radical scavenging activity

(c)

Figure S25: The inhibition rate curves of FRAP activity

- (a) Liner regression analysis between $FeSO_4$ and absorbance at 593 nm ;
- (b) Liner regression analysis between samples and absorbance at 593 nm;

(c) Liner regression analysis between samples and FeSO₄

	AChE	α-Glucosidase	DPPH radical	EDAD	Hydroxyl radical
	inhibition	inhibitory	scavenging	rRAP	scavenging
No.	activity ^a	activity ^b	capacity ^c	value	capacity ^e
	Inhibitory	Inhibitory rates(%)	Scavenging	$\mu M \; Fe^{2+}/250 \; \mu M$	Scavenging
	rates(%)		rates(%)	samples	rates(%)
1	0.09 ± 0.01	8.52 ± 1.04	0.32 ± 0.07	-6.06 ± 0.23	-4.39 ± 1.52
2	-2.62 ± 0.04	1.20 ± 1.71	5.00 ± 0.42	5.85 ± 0.31	-1.29 ± 0.38
3	-4.76 ± 0.05	5.71 ± 0.90	2.55 ± 0.32	-2.90 ± 0.18	1.46 ± 0.74
4	-8.21 ± 0.02	6.37 ± 0.47	85.70 ± 0.13	295.04 ± 1.48	-32.46 ± 2.16
5	-3.56 ± 0.04	-5.69 ± 0.18	83.27 ± 0.18	171.25 ± 1.40	-21.07 ± 2.27
6	-5.39 ± 0.06	41.08 ± 0.69	86.98 ± 0.14	317.73 ± 4.28	-33.37 ± 1.27
7	1.19 ± 0.01	-17.75 ± 0.23	-0.32 ± 0.52	-3.06 ± 0.48	0.12 ± 0.20
8	-3.79 ± 0.01	6.63 ± 1.15	1.22 ± 0.50	-5.32 ± 0.57	0.76 ± 0.37
9	-0.67 ± 0.02	-0.76 ± 0.51	1.92 ± 0.71	-0.44 ± 0.30	1.42 ± 0.46

Table S1: The inhibitory rates of compounds 1–9 at the test concentrations*

*Result values are expressed as the mean \pm SD (n = 3)

The test concentrations a: 100 µM; b: 400 µM; c: 200 µM;

d: 250 μM (525.21 μM Fe²+/250 μM ascorbic acid); e:250 $\mu M.$

Table S2: Optical rotation value of **4–6** ($[\alpha]_D^{20}$)

Compounds	Optical rotation
4	16.8°
5	10.8°
6	-16.1°