Supporting Information

Rec. Nat. Prod. 17:2 (2023) 293-299

A New Lignan from the Herbaceous Stems of Ephedra

intermedia Schrenket C. A. Meyer.

Xiling Fan^{1,2}, Yangang Cao^{1,2}, Mengnan Zeng^{1,2}, Ru Wang^{1,2}, Yanling

Liu^{1,2}, Chen Xu^{1,2}, Xinyi Ma^{1,2}, Yingjie Ren^{1,2}, He Chen^{1,2}, Xiangda Li

^{1,2}, Xiaoke Zheng ^{1,2*} and Weisheng Feng ^{1,2*}

¹School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China ²The Engineering and Technology Center for Chinese Medicine Development of Henan

T TOVINCE China, Zhengzhou 450040, China	Province C	China ,	Zhengzhou	450046,	China
--	------------	---------	-----------	---------	-------

Table of Contents	Page
Figure S1: HR-ESI-MS spectrum of compound 1	3
Figure S2: HR-ESI-MS spectrum of compound 1 (100-500 m/z)	4
Figure S3: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 1	5
Figure S4: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 1 (From $\delta_{\rm H}$ 3.9 ppm to $\delta_{\rm H}$	5
Figure S5: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 1 (From $\delta_{\rm H}$ 1.5 ppm to $\delta_{\rm H}$	6
Figure S6: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 1	6
Figure S7: DEPT135 spectrum of 1	7
Figure S8: ¹ H- ¹ H COSY spectrum of 1	7
Figure S9: The enhanced ¹ H- ¹ H COSY spectrum of 1(From $\delta_{\rm H} 0.5$ ppm to $\delta_{\rm H} 6.0$	8
Figure S10: HSQC spectrum of 1	8
Figure S11: The enhanced HSQC spectrum of 1(From $\delta_{\rm H}$ 5.3 ppm to $\delta_{\rm H}$ 7.9	9
Figure S12: The enhanced HSQC spectrum of 1(From $\delta_{\rm H}$ 0.8 ppm to $\delta_{\rm H}$ 5.2	9
Figure S13: HMBC spectrum of 1	10
Figure S14: The enhanced HMBC spectrum of 1(From $\delta_{\rm H}$ 0.6 ppm to $\delta_{\rm H}$ 5.6	10
Figure S15: NOESY spectrum of 1	11
Figure S16: UV spectrum of 1	12
Figure S17: IR spectrum of 1	12
Figure S18: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 2	13
Figure S19: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 2	13
Figure S20: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 3	14
Figure S21: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 3	14

Figure S22: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 4	15
Figure S23: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 4	15
Figure S24: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 5	16
Figure S25: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 5	16
Figure S26: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 6	17
Figure S27: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 6	17
Figure S28: ¹ H NMR spectrum (500MHz, CD ₃ OD) of 7	18
Figure S29: ¹³ C NMR spectrum (125MHz, CD ₃ OD) of 7	18
Figure S30: The structures of compounds 1-7	19
Figure S31: The key ¹ H- ¹ H COSY, HMBC correlations of compounds 1	19
Figure S32: Experimental and calculated ECD spectra of compound 1	19
Figure S33: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound 1	20
Figure S34: The effects of compounds $1-7$ on BEAS-2B cell by TGF- β 1	21
Figure S35: The Scifinder similarity report for new compound 1	22
Figure S36: The structures similar to compound 1	23
Table S1: The ¹ H NMR data for compound 1 and four similar compounds	 24
Table S2: The ¹³ C NMR data for compound 1 and four similar compounds	25

Figure S1: HR-ESI-MS spectrum of compound 1

Generic Display Report

Figure S2: HR-ESI-MS spectrum of compound 1 (100-500 m/z)

Figure S4: ¹H NMR spectrum (500MHz, CD₃OD) of **1** (From $\delta_{\rm H}$ 3.9 ppm to $\delta_{\rm H}$ 7.4 ppm)

Figure S6: ¹³C NMR spectrum (125MHz, CD₃OD) of 1

Figure S8: ¹H-¹H COSY spectrum of 1

Figure S9: The enhanced ¹H-¹H COSY spectrum of 1 (From $\delta_{\rm H}$ 0.5 ppm to $\delta_{\rm H}$ 6.0 ppm)

Figure S10: HSQC spectrum of 1

2022 ACG Publications. All rights reserved.

Figure S11: The enhanced HSQC spectrum of **1** (From $\delta_{\rm H}$ 5.3 ppm to $\delta_{\rm H}$ 7.9 ppm)

Figure S12: The enhanced HSQC spectrum of 1 (From $\delta_{\rm H}$ 0.8 ppm to $\delta_{\rm H}$ 5.2 ppm)

Figure S14: The enhanced HMBC spectrum of 1 (From $\delta_{\rm H}$ 0.6 ppm to $\delta_{\rm H}$ 5.6 ppm)

Figure S15: NOESY spectrum of 1

Thermo Scientific ~ VISIONpro SOFTWARE V4.41

Operator Name	(None Entered)	Date of Report	2022/5/31
Department	(None Entered)	Time of Report	22:00:54下午
Organization	(None Entered)		
Information	(None Entered)		

Scan Graph

Results Table - scan004,ZMH-D-58,Cycle01

nm	A	Peak Pick Method
207.00	2.635	Find 8 Peaks Above -3.0000 A
227.00	1.472	Start Wavelength190.00 nm
281.00	.684	Stop Wavelength400.00 nm
		Sort By Wavelength
Sensitivity	Medium	

Figure S16: UV spectrum of 1

Figure S17: IR spectrum of 1 2022 ACG Publications. All rights reserved.

Figure S19: ¹³C NMR spectrum (125MHz, CD₃OD) of 2

Figure S21: ¹³C NMR spectrum (125MHz, CD₃OD) of 3

Figure S27: ¹³C NMR spectrum (125MHz, CD₃OD) of 6

Figure S29: ¹³C NMR spectrum (125MHz, CD₃OD) of 7

Figure S30: The structures of compounds 1–7

Figure S31: The key ¹H-¹H COSY, HMBC correlations of compounds 1

Figure S32: Experimental and calculated ECD spectra of compound 1

Position	ác	ÔH
1	133.6	
2	113.4	6.58 (1H, d, 1.8)
3	148.9	
4	145.6	
5	115.8	6.65 (1H, d, 8.0)
6	122.7	6.51 (1H, dd, 8.0, 1.8)
7	35.8	2.64 (1H, <i>dd</i> , 13.8, 7.4) 2.62 (1H, <i>dd</i> , 13.8, 7.4)
8	44.3	1.90 (1H, <i>m</i>)
9	66.0	3.66 (1H, <i>dd</i> , 10.9, 5.9) 3.50 (1H, <i>dd</i> , 10.9, 6.5)
10	173.0	
11	20.9	2.02 (3H, s)
1'	133.1	
2'	113.2	6.53 (1H, d, 1.9)
3'	148.8	
4'	145.6	
5'	115.8	6.66 (1H, d, 7.9)
6'	122.6	6.52 (1H, dd, 7.9, 1.9)
7'	35.5	2.56 (1H, <i>dd</i> , 11.4, 5.6) 2.54 (1H, <i>dd</i> , 11.0, 6.0)
8'	40.4	2.14(1H, m)
9'	62.6	4.20 (1H, dd, 11.2, 6.0) 3.98 (1H, dd, 11.2, 6.5)
3-OCH ₃	56.1	3.73 (3H, s)
3'-OCH₃	56.1	3.72 (3H, s)

Table 1. ¹H (500 MHz) and ¹³C (125 MHz) NMR data for compound 1 (CD₃OD, δ in ppm, J in Hz)

Figure S33: ¹H (500 MHz) and ¹³C (125 MHz) NMR data for compound 1 (CD₃OD, δ in ppm, J in Hz)

Group	Does (µM)	cell viability (%)
CON		100.0 ± 3.6**
TGF-β1	1ng/mL	90.7 ± 1.9
1	10	97.9 ± 3.6**
2	10	98.4 ± 1.0**
3	10	94.4 ± 2.3
4	10	96.0 ± 1.1**
5	10	94.2 ± 4.4
б	10	99.6 ± 1.9**
7	10	94.4 ± 2.2

Table 2. The effects of compounds 1–7 on BEAS-2B cell by TGF- β 1

(** $P \le 0.001$ compared with the TGF- $\beta 1$ group)

Figure S34: The effects of compounds 1–7 on BEAS-2B cell by TGF- β 1

Explore Saved Se	earches - SciPlanner		
REFERENCES	SUBSTANCES: CHEMICAL STRUCTURE		
Research Topic Author Name	Structure Editor		SAVED ANSWER SETS Autosaved Reference Se
Company Name Document Identifier	~ /	Search Type:	Learn how to:
ournal		Exact Structure	Create saved Answer S
atent	11J	Substructure	View All Import
ags	LTT~~	- Semmary	KEEP ME POSTED 🚱
JBSTANCES		Show precision analysis	You have no profiles.
hemical Structure	Click image to change structure or view detail		Learn how to: Create Keep Me Posted
operty	TRAV GLOBA.	ChemDraw'	
ubstance Identifier	Import CXF	Launch a SciFinder/SciFinder [®] substance or reaction search directly from the latest version of ChemDraw. Learn More	
ACTIONS			
and the second second	Search		

Contact Us | Legal Copyright @ 2022 American Chemical Society. All Rights Reserved. | 第ICP鑒13047075특-3

SciFinder		Pröferences SciFinder Help + Sign Out
A CAS SOLUTION		Wekome yan ling Liu
Explore - Sa	ved Searches SciPlanner	
Chemical Structure similarity		
SUBSTANCES		
	Select All Deselect All	
	0 of 9 Similarity Candidates Selected	Substances
		1
	95-98	14
	90-94	75
	85-89	261
	80-84	1438
	75-79	5871
	70-74	25260
	65-69	93048
	0-64 (least similar)	261556
	Cet Substances	

Enternance Professional Software Softwa					
Explore - Saved	Searches v SciPlanner		Save Print Export		
Chemical Structure similarity >	substances (90)				
SUBSTANCES 0	Get Get References Get Commercial References		The Cruster Komp Me. Scriptaner		
Analyze Refine	Sort by: Similarity Score		Display Options		
	0 of 90 Substances Selected		4 4 Pape: 1 of 6 🕨 🕅		
Analyze by: Substance Role Biological Study 50 Connection	Score: 2:99 □ 1. 040844-77-9 ٩ ~1	Score: 98 2. 1612227-17-4 9 -1	Sorre: 98 □ 3. 2123479-60-5 9 ~1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Preparation 44 Reactant or Reagent 28 Properties 25 Occurrence 21	- Corto	م تم می اور م	què		
Uses 18 Analytical Study 9 Process 8	Absolute stereschemistry. C ₂₂ H ₂₀ O ₇ 1,4%Landou, 2,3 bis((+hydroxy-3-methoxybleny()methy[), 1-acetate, (24,34) + Key Physical Properties	Rotation (^),Absidute stereochensistry. Cy2 H3n O6 Beccentrolizaol, +hydraxy-9 ((+hydraxy-3 methaxybheny/methyl)-3 methaxymethyl- 1-soctax, (BAyA7 - Key Physical Properties	Absolute stereochemistry. C ₂₂ Hyg O ₆ Bettenetedualoi, 4-hydraxy-(b-(4-hydraxy-3-methaxyheny()methyl)-3-methaxy-y-methyl-, 1-actual, (SA):57 Keyr Hhydrakal Properties		
Show More	Scove: 96 ↓ 4. 2772946-50-4 9. ~0 → 1 ▲*	Score: 97 . 119030-71-6 9 -1	Score: 97 □ 6. 119030-72-7 9 -2 0		
		algolade stareothermitry.	Abside streechersity.		
	$\begin{array}{c} c_{22}\mu_{23}n_{6}\\ {\rm Becknetwidtand}, +hydroxy-9:((+hydroxy-3-methaxyphenyf)methy[-3-methaxy-y-methy[-,1-acrete, (BCYS)-ref \\ + Key Physical Properties \end{array}$	$\label{eq:constraint} \begin{array}{c} C_{23}H_{30}O_{7}\\ 1.4^{4}sultanedu,2\cdot([3.4-dimethoxyphenyl])methyl]-3\cdot[(4-hydroxy-3-methoxyphenyl])methyl]-,\\ 1.2^{4}cettele,[Ref(R,R^{-})]^{-}(SCI)\\ 3^{4}KeyPhysical Properties \end{array}$	Cyp Hyp 07 1,4+Bitamedia, 2-{(3,4-dimethacyphenyl)methyl]-3-{(4-hydroxy-3-methacyphenyl)methyl]-, + accessite, (24376; 1901) • Key Physical Properties		

Figure S35: The Scifinder similarity report for new compound 1

Figure 550. The structures similar to compound I

NG	1	similar compound	similar compound 2	similar compound 3	similar compound 4
NO	(CD ₃ OD)	1 (CDCl ₃)	(CDCl ₃)	(Acetone-d ₆)	(CDCl ₃)
1	-	-	-	-	-
2	6.58 (1H, d, 1.8)	6.47-6.48 (1H, <i>m</i>)	6.40 (1H, <i>d</i> , 2.0)	6.71 (1H, <i>d</i> , 1.6)	6.40–6.62 (1H, m)
3	-	-	-	-	-
4	-	-	-	-	-
5	6.65 (1H, d, 8.0)	6.79 (1H, d, 8.0)	6.70 (1H, <i>d</i> , 8.0)	6.68 (1H, d, 8.0)	6.81 (1H, <i>d</i> , 8.8)
6	6.51 (1H, dd, 8.0, 1.8)	6.55 (1H, dd, 8.0, 2.0)	6.50 (1H, dd, 8.0, 2.0)	6.60 (1H, dd, 1.6, 8.0)	6.40–6.62 (1H, m)
7	2.64 (1H, dd, 13.8, 7.4)	2.62 (1H, dd, 13.9, 6.5)	2.61 (2H, d, 7.2)	2.04 (211.4)	2.61 (2H, <i>d</i> , 6.6)
/	2.62 (1H, dd, 13.8, 7.4)	2.52 (1H, dd, 13.9, 8.2)		2.04 (2H, <i>t</i>)	
8	1.90 (1H, <i>m</i>)	1.83 (1H, dq, 7.1, 3.1)	1.90–2.15 (1H, <i>m</i>)	1.90 (1H, <i>m</i>)	2.0–2.2 (1H, <i>m</i>)
0	3.66 (1H, dd, 10.9, 5.9)	4.19 (1H, dd, 11.2, 5.8)	4.23 (1H, dd, 11.4, 5.6)	3.66 (1H, dd, 11.2, 2.8)	4.17 (1H, dd, 11.2, 5.3)
9	3.50 (1H, dd, 10.9, 6.5)	4.00 (1H, <i>dd</i> , 11.2, 6.7)	3.95 (1H, dd, 11.4, 5.6)	3.52 (1H, dd, 11.2, 2.8)	4.00 (1H, dd, 11.2, 5.3)
10	-	-	-	-	-
11	2.02 (3H, s)	2.06 (3H, s)	2.06 (3H, s)	-	2.06 (3H, s)
1'	-	-	-	-	-
2'	6.53 (1H, d, 1.9)	6.47-6.48 (1H, <i>m</i>)	6.40 (1H, <i>d</i> , 2.0)	6.71 (1H, <i>d</i> , 1.6)	6.40–6.62 (1H, m)
3'	-	-	-	-	-
4'	-	-	-	-	-
5'	6.66 (1H, <i>d</i> , 7.9)	6.80 (1H, d, 7.9)	6.70 (1H, <i>d</i> , 8.0)	6.68 (1H, d, 8.0)	6.70 (1H, <i>d</i> , 8.4)
6'	6.52 (1H, dd, 7.9, 1.9)	6.57 (1H, dd, 7.9, 1.9)	6.50 (1H, dd, 8.0, 2.0)	6.60 (1H, dd, 1.6, 8.0)	6.40–6.62 (1H, m)
71	2.56 (1H, dd, 11.4, 5.6)	2.61 (1H, dd, 13.7, 6.9)	2.61 (2H, d, 7.2)		2.61 (2H, <i>d</i> , 6.6)
/'	2.54 (1H, dd, 11.0, 6.0)	2.40 (1H, dd, 13.7, 7.8)		2.04 (2H, t)	
8'	2.14(1H, m)	1.94(1H, m)	1.90–2.15 (1H, <i>m</i>)	1.90 (1H, <i>m</i>)	2.0–2.2 (1H, <i>m</i>)
01	4.20 (1H, dd, 11.2, 6.0)		4.23 (1H, dd, 11.4, 5.6)	3.66 (1H, dd, 11.2, 2.8)	4.17 (1H, dd, 11.2, 5.3)
9	3.98 (1H, dd, 11.2, 6.5)	0.91 (3H, <i>a</i> , 7.1)	3.95 (1H, dd, 11.4, 5.6)	3.52 (1H, dd, 11.2, 2.8)	4.00 (1H, dd, 11.2, 5.3)
10'	-	-	-	-	-
11'	-	-	2.06 (3H, s)	-	2.06 (3H, s)
3-OCH ₃	3.73 (3H, s)	3.79 (3H, s)	3.75 (3H, s)	3.75 (3H, s)	-
3'-OCH ₃	3.72 (3H, s)	3.78 (3H, s)	3.75 (3H, s)	3.75 (3H, s)	3.82 (3H, s)
4-OH	-	5.55 (1H, s)	5.40 (1H, brs)	-	5.50 (1H, brs)
4' - OH	-	5.53 (1H, s)	5.40 (1H, brs)	-	-
9-OH	-	-	-	3.31 (1H, s)	-
9' - OH	-	-	-	3.31 (1H, <i>s</i>)	-
-					5 00 (OH)
OCH ₂ O-	-	-	-	-	5.92 (2H, <i>s</i>)

Table S1: The ¹H NMR data for compound 1 and four similar compounds

NO	1	similar compound	similar compound 2	similar compound 3	similar compound 4
NO	(CD ₃ OD)	1 (CDCl ₃)	(CDCl ₃)	(Acetone- d_6)	(CDCl ₃)
1	133.6	132.9	131.2	133.4	131.4
2	113.4	111.3	111.1	113.1	111.3
3	148.9	146.4	146.4	147.9	146.5
4	145.6	143.8	143.7	145.2	144.0
5	115.8	114.1	114.1	115.2	114.3
6	122.7	121.7	121.4	122.2	121.6
7	35.8	35.4	34.7	35.8	34.9
8	44.3	41.9	39.3	44.5	39.8
9	66.0	64.7	64.2	60.8	64.4
10	173.0	171.3	170.9	-	171.0
11	20.9	21.1	20.7	-	21.0
1'	133.1	132.2	131.2	133.4	133.5
2'	113.2	111.2	111.1	113.1	108.1
3'	148.8	146.3	146.4	147.9	147.7
4'	145.6	143.7	143.7	145.2	146.5
5'	115.8	114.0	114.1	115.2	109.2
6'	122.6	121.7	121.4	122.2	121.8
7'	35.5	35.0	34.7	35.8	34.9
8'	40.4	40.6	39.3	44.5	39.8
9'	62.6	15.2	64.2	60.8	64.4
10'	-	-	170.9	-	171.0
11'	-	-	20.7	-	21.0
3-OCH ₃	56.1	55.8	55.4	55.9	-
3'-OCH ₃	56.1	55.7	55.4	55.9	55.8
4-OH	-	-	-	-	-
4'-OH	-	-	-	-	-
9-OH	-	-	-	-	-
9'-OH	-	-	-	-	-
-					100.0
OCH ₂ O-	-	-	-	-	100.7

Table S2: The ¹³C NMR data for compound 1 and four similar compounds