Supporting Information

Rec. Nat. Prod. 17:2 (2023) 318-322

Two New Spirostanol Glycosides from the Roots and Rhizomes of Helleborus thibetanus Franch.
Yuze Li ${ }^{1}$, Zilong Zhang ${ }^{1}$, Wenli Huang ${ }^{1}$, Huawei Zhang ${ }^{1}$, Yi Jiang ${ }^{1}$,
Jianli Liu ${ }^{2}$, Xiaomei Song ${ }^{1 \times *}$, and Dongdong Zhang ${ }^{1, *}$
${ }^{1}$ School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
${ }^{2}$ Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China

Table of Contents	page
Figure S1: The IR spectrum of 1 (in KBr)	3
Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)	4
Figure S3: The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	5
Figure S4: The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	6
Figure S5: The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 (in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)\left(\right.$ (From $\delta_{\mathrm{C}} 60 \mathrm{ppm}$ to $\left.\delta_{\mathrm{C}} 85 \mathrm{ppm}\right)$	7
Figure S6: The HSQC spectrum of 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	8
Figure S7: The HSQC spectrum of $\mathbf{1}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 15 \mathrm{ppm}$ to $\left.\delta_{\mathrm{C}} 65 \mathrm{ppm}\right)$	9
Figure S8: The HSQC spectrum of $1\left(\right.$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 65 \mathrm{ppm}$ to $\delta_{\mathrm{C}} 115 \mathrm{ppm}$)	10
Figure S9: The HMBC spectrum of 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	11
Figure S10: The HMBC spectrum of 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{H}} 0.8 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 3.0 \mathrm{ppm}\right)$	12
Figure S11: The HMBC spectrum of 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{H}} 3.3 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 6.6 \mathrm{ppm}\right)$	13
Figure S12: The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	14
Figure S13: The NOESY spectrum of 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	15
Figure S14: New compound search report of SciFinder	16
Figure S15: The IR spectrum of 2 (in KBr)	17
Figure S16: The HR-ESI-MS spectrum of 2 (in MeOH)	18
Figure S17: The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	19
Figure S18: The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	20
Figure S19: The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 15 \mathrm{ppm}$ to $\delta_{\mathrm{C}} 85 \mathrm{ppm}$)	21
Figure S20: The HSQC spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	22
Figure S21: The HSQC spectrum of $2\left(\right.$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 10 \mathrm{ppm}$ to $\delta_{\mathrm{C}} 65 \mathrm{ppm}$)	23
Figure S22: The HSQC spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 60 \mathrm{ppm}$ to $\delta_{\mathrm{C}} 125 \mathrm{ppm}$)	24
Figure S23: The HMBC spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)	25
Figure S24: The HMBC spectrum of $2\left(\right.$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{H}} 2.2 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 4.5 \mathrm{ppm}\right)$	26
Figure S25: The HMBC spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{H}} 4.6 \mathrm{ppm}$ to $\delta_{\mathrm{H}} 8.2 \mathrm{ppm}$)	27

Figure S26: The NOESY spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) 28
Figure S27: New compound search report of SciFinder 29
Figure S28: The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ (in pyridine- d_{5}) 30
Figure S29: The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ (in pyridine- d_{5}) 31
Figure S30: The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 (in pyridine- d_{5}) 32
Figure S31: The ${ }^{13} \mathrm{C}$ NMR spectrum of 4 (in pyridine- d_{5}) 33
Figure S32: The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (in pyridine- d_{5}) 34
Figure S33: The ${ }^{13} \mathrm{C}$ NMR spectrum of 5 (in pyridine- d_{5}) 35
Figure S34: Structure of similar compound (Ref) 36
Table S1: ${ }^{13} \mathrm{C}$ NMR data for compounds $\mathbf{1 - 5}$ and Ref. 37-38
Text S1: Detail experiments for Sugar analysis of compounds 1 and 2 39
Text S2: Cytotoxicity assay of compounds 1-5 39

Figure S1: The IR spectrum of $\mathbf{1}$ (in KBr)

Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)

Figure S3: The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$

Figure S4: The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)
© 2022 ACG Publications. All rights reserved

Figure S5: The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 60 \mathrm{ppm}$ to $\delta_{\mathrm{C}} 85 \mathrm{ppm}$)

Figure S6: The HSQC spectrum of $\mathbf{1}\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$
© 2022 ACG Publications. All rights reserved

Figure S7: The HSQC spectrum of $\mathbf{1}\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)\left(\right.$ From $\delta_{\mathrm{C}} 15 \mathrm{ppm}$ to $\left.\delta_{\mathrm{C}} 65 \mathrm{ppm}\right)$

Figure S8: The HSQC spectrum of $\mathbf{1}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 65 \mathrm{ppm}$ to $\left.\delta_{\mathrm{C}} 115 \mathrm{ppm}\right)$

Figure S9: The HMBC spectrum of $\mathbf{1}\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$

Figure S10: The HMBC spectrum of $\mathbf{1}$ (in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)\left(\right.$ From $\delta_{\mathrm{H}} 0.8 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 3.0 \mathrm{ppm}\right)$

Figure S11: The HMBC spectrum of 1 (in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)\left(\right.$ From $\delta_{\mathrm{H}} 3.3 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 6.6 \mathrm{ppm}\right)$

Figure S12: The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 1 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)
© 2022 ACG Publications. All rights reserved

Figure S13: The NOESY spectrum of $\mathbf{1}\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$
© 2022 ACG Publications. All rights reserved
$\square \quad 95-98$
$\square \quad 90-94$ 940
$\square \quad 85-89$ 1417

- 80-84 2766
$\square \quad 75-79$ 19124
- 65-69 40019- Substances

```
Score: \geq99
1. 2241077-84-7 
~1 睉
```


Absolute stereochemistry.,Rotation (-).

$\mathrm{C}_{60} \mathrm{H}_{94} \mathrm{O}_{31}$

β-D-Galactopyranoside, $(1 \beta, 3 \beta, 23 S, 24 S)-1-[(O$ D-apio- β-D
furanosyl-($1 \rightarrow 3$)-O-6-deoxy-a-L-mannopyranosyl-($1 \rightarrow 2$)-O-[$[-\mathrm{D}$
xylopyranosyl-($1 \rightarrow 3$)]-a-L-arabinopyranosyl)oxy]-3,23-
dihydroxyspirosta-5,25(27)-dien-24-yl 6-deoxy-4-O- -D -
glucopyranosyl-

- Key Physical Properties

Figure S14: New compound search report of SciFinder
© 2022 ACG Publications. All rights reserved

Figure S15: The IR spectrum of 2 (in KBr)
© 2022 ACG Publications. All rights reserved

Figure S16: The HR-ESI-MS spectrum of 2 (in MeOH)

Figure S17: The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)

Figure S18: The ${ }^{13} \mathrm{C}$ NMR spectrum of $2\left(\right.$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)
© 2022 ACG Publications. All rights reserved

Figure S19: The ${ }^{13} \mathrm{C}$ NMR spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{C}} 15 \mathrm{ppm}$ to $\delta_{\mathrm{C}} 85 \mathrm{ppm}$)

Figure S20: The $\mathrm{HSQC}_{\text {spectrum of }} \mathbf{2}\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$
(C) 2022 ACG Publications. All rights reserved

Figure S21: The HSQC spectrum of 2 (in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)\left(\right.$ From $\delta_{\mathrm{C}} 10 \mathrm{ppm}$ to $\left.\delta_{\mathrm{C}} 65 \mathrm{ppm}\right)$ © 2022 ACG Publications. All rights reserved

Figure S22: The HSQC spectrum of $2\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)\left(\right.$ From $\delta_{\mathrm{C}} 60 \mathrm{ppm}$ to $\left.\delta_{\mathrm{C}} 125 \mathrm{ppm}\right)$

Figure S23: The HMBC spectrum of $2\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$

Figure S24: The HMBC spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) (From $\delta_{\mathrm{H}} 2.2 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 4.5 \mathrm{ppm}\right)$

Figure S25: The HMBC spectrum of $2\left(\right.$ in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)\left(\right.$ From $\delta_{\mathrm{H}} 4.6 \mathrm{ppm}$ to $\left.\delta_{\mathrm{H}} 8.2 \mathrm{ppm}\right)$

Figure S26: The NOESY spectrum of 2 (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$)

| | | |
| :--- | :--- | ---: | :--- |
| $\mathbf{0}$ of 9 Similarity Candidates Selected | | |
| \square | ≥ 99 (most similar) | |
| \square | $95-98$ | 2 |
| \square | $90-94$ | 56 |
| \square | $85-89$ | 586 |
| \square | $80-84$ | 1706 |
| \square | $75-79$ | 5569 |
| \square | $70-74$ | 11969 |
| \square | $65-69$ | 19642 |
| \square | $0-64$ (least similar) | 48793 |

Get Substances

Figure S27: New compound search report of SciFinder
© 2022 ACG Publications. All rights reserved

Figure S28:The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ (in pyridine- d_{5})

Figure S29: The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ (in pyridine- d_{5})

Figure S30: The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 (in pyridine- d_{5})
© 2022 ACG Publications. All rights reserved

Figure S31: The ${ }^{13} \mathbf{C}$ NMR spectrum of 4 (in pyridine- d_{5})

Figure S32: The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (in pyridine- d_{5})

Figure S33: The ${ }^{13} \mathrm{C}$ NMR spectrum of 5 (in pyridine- d_{5})
© 2022 ACG Publications. All rights reserved

Figure S34: Structure of similar compound (Ref)
(23S,24S)-24-\{[O- β-D-glucopyranosyl- $(1 \rightarrow 4)$ - β-D-fucopyranosyl]oxy $\}-3 \beta, 23-$ dihydroxyspirosta-5,25(27)-dien-1 β-yl O - β-D-apiofuranosyl-($1 \rightarrow 3$)- O-(4- O-acetyl- α-L-rhamnopyranosyl)-($1 \rightarrow 2$)- $O-\alpha$-L-arabinopyranoside (Ref is similar to compounds $\mathbf{1}$ and $\mathbf{2}$) Zhang H., Su Y.F., Yang F.Y., et al. Six new steroidal saponins from Helleborus thibetanus Helv. Chim. Acta. 2014, 97(12), 1652-1665.

Table S1: ${ }^{13} \mathrm{C}$ NMR data for compounds 1-5 and Ref.

Position	1	2	3	4	5	Ref.
1	84.3	84.1	83.8	84.7	84.8	83.8
2	37.9	38.0	38.3	38.3	38.5	37.8
3	68.7	68.5	68.5	68.5	67.6	68.0
4	44.3	44.5	44.4	44.4	43.3	43.9
5	140.2	140.1	140.0	140.0	139.8	139.5
6	125.1	125.3	125.4	125.4	125.4	124.8
7	32.4	32.5	32.5	32.4	32.4	32.0
8	33.4	33.5	33.5	33.5	33.6	33.0
9	50.9	50.8	50.9	50.8	50.9	50.4
10	43.4	43.4	43.4	43.4	42.9	42.9
11	24.4	24.4	24.4	24.4	24.5	23.9
12	40.9	40.9	41.0	41.2	40.6	40.4
13	41.3	41.3	41.3	40.9	41.4	40.8
14	57.2	57.2	57.2	57.2	57.5	56.7
15	32.8	32.9	32.9	32.9	32.8	32.4
16	83.5	83.5	83.5	83.0	84.4	83.0
17	62.0	62.1	62.1	62.0	59.1	61.6
18	17.3	17.3	17.3	17.3	17.4	16.8
19	15.6	15.4	15.5	15.5	15.5	15.0
20	37.9	38.0	37.9	37.9	44.3	37.4
21	15.3	15.3	15.3	15.2	64.9	14.8
22	112.3	112.3	112.3	112.2	112.7	111.8
23	70.8	70.8	70.8	70.6	71.4	70.2
24	82.8	82.8	82.8	83.4	75.4	82.3
25	144.4	144.4	144.4	144.3	146.5	143.9
26	62.0	62.0	62.1	62.0	61.3	61.5
27	114.3	114.3	114.3	114.4	113.3	113.7
COCH_{3}	-	-	-	-	21.4	-
$\underline{\mathrm{COCH}} 3$	-	-	-	-	171.1	-
1-O-Ara						
1	101.0	100.9	101.0	101.2	101.1	100.5
2	75.8	74.7	74.9	73.1	73.1	74.7
3	76.3	76.7	76.6	85.7	85.7	76.0
4	70.6	70.8	70.8	70.2	70.1	70.3
5	67.9	68.2	67.3	67.2	68.5	67.7
Rha						
1	102.0	101.4	101.5	101.3	101.3	100.9
2	72.3	72.8	71.3	71.6	71.4	71.5
3	80.6	70.5	78.4	78.3	78.3	78.0

© 2022 ACG Publications. All rights reserved

4	73.0	76.9	75.1	75.0	75.1	74.4
5	70.0	67.1	68.2	67.6	67.2	66.8
6	19.5	18.8	18.8	18.9	18.9	18.3
COCH_{3}	-	21.5	21.6	21.6	21.6	21.0
$\mathbf{C O C H}_{3}$	-	171.3	171.2	171.1	171.4	170.6
Api						
1	112.3	-	112.8	112.7	112.3	112.2
2	78.2	-	78.6	78.4	78.4	77.9
3	80.6	-	80.5	80.5	80.5	79.9
4	75.6	-	75.5	75.1	75.0	75.0
5	66.1	-	65.8	65.8	65.5	65.3
Xyl						
1	-	-	-	107.2	107.2	-
2	-	-	-	75.9	74.3	-
3	-	-	-	79.0	79.0	-
4	-	-	-	72.1	72.1	-
5	-	-	-	67.7	65.8	-
$24-$ O-Fuc						
1	106.6	106.5	106.5	-	-	106.0
2	74.2	74.2	74.2	-	-	73.7
3	76.0	76.0	76.0	-	-	76.2
4	83.8	83.8	84.4	-	-	83.3
5	71.2	71.3	72.0	-	-	70.8
6	18.0	18.0	18.0	-	-	17.4
Glc						
1	107.4	107.4	107.4	107.0	-	106.9
2	76.7	76.7	76.7	75.4	-	75.5
3	79.1	79.1	79.0	80.7	-	78.5
4	72.0	72.0	72.2	71.4	-	71.6
5	79.0	79.0	79.1	78.7	-	78.6
6	63.2	63.3	63.2	61.9	-	62.8

Text S1: Detail experiments for Sugar analysis of compounds $\mathbf{1}$ and 2
Compounds 1-2 (each 2 mg) were individually dissolved with $2 \mathrm{~mol} / \mathrm{LCF}_{3} \mathrm{COOH}$ (2 mL) at $100^{\circ} \mathrm{C}$ for 8 h . After dilution with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$, the reaction mixture was extracted with EtOAc, yielding distinct EtOAc and $\mathrm{H}_{2} \mathrm{O}$ phases. The latter was concentrated under reduced pressure by repeated mixing with methanol until the solvent was completely evaporated. The residue was dissolved in pyridine solution (1 mL) of L-cysteine methyl ester hydrochloride (2 mg / L). After heating at $60^{\circ} \mathrm{C}$ for 1 h , the solvent was evaporated under N_{2} protection. The reaction products were dissolved in the mixed solution of N -(trimethylsilyl)imidazole (0.2 mL) and anhydrous pyridine (2 mL), and the mixture was maintained at $60^{\circ} \mathrm{C}$ for 1 h , evaporated under a stream of N_{2}, and dried in a vacuum. The residue was suspended in cyclohexane and water, the cyclohexane layer was the trimethylsilyl ether derivatives of monosaccharide. The mixture was filtered through a $0.45 \mu \mathrm{~m}$ membrane to remove the precipitate and analyzed by GC under the following conditions: HP-5 capillary column ($30 \mathrm{~m} \times 0.32 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$); flame ionization detector; detector temperature $=280{ }^{\circ} \mathrm{C}$; injection temperature $=250{ }^{\circ} \mathrm{C}$; initial temperature $=100^{\circ} \mathrm{C}$ for 2 min , followed by an increase to $280^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$; final temperature $=280^{\circ} \mathrm{C}$ for 5 min ; and N_{2} gas as a carrier. The absolute configurations of sugars isolated from the hydrolysates of compounds $\mathbf{1 - 2}$ were determined by comparing the retention times $\left(\mathrm{t}_{\mathrm{R}}\right)$ of their trimethylsilyl-L-cysteine derivatives with those of authentic sugars prepared by a similar procedure. Retention times for authentic sugars after being derivatized were follows: D-glucose, 45.2 min , D-fucose, 35.2 min ; D-apiose, 11.2 min ; L-arabinose, 12.2 min and L-rhamnopyranose, 14.5 min , respectively.

Text S2: Cytotoxicity assay

Cytotoxic was determined against HCT116, A549 and HepG2 tumor cell lines based on the MTT assay method in vitro, and 5 -fluorouracil ($5-\mathrm{Fu}$) was used as the positive control. Briefly, $1 \times 10^{4} \mathrm{~mL}^{-1}$ cells were seeded into 96 -well plates and allowed to adhere for 24 h . Compounds 1-5 were dissolved in DMSO and diluted with complete medium to six concentration levels (from $0.001 \mathrm{mmol} \cdot \mathrm{L}^{-1}$ to $0.3 \mathrm{mmol} \cdot \mathrm{L}^{-1}$) for inhibition rate determination. After incubation at $37{ }^{\circ} \mathrm{C}$ for 24 h , the supernatant was removed before adding DMSO $(100 \mu \mathrm{~L})$ to each well. The inhibition rate (IR) and IC_{50} were calculated. Values are mean $\pm \mathrm{SD}, n=3, * *$ $p<0.01 \mathrm{vs}$. DMEM control.

