Supporting Information

Rec. Nat. Prod. 17:2 (2023) 318-322

Two New Spirostanol Glycosides from the Roots and Rhizomes of

Helleborus thibetanus Franch.

Yuze Li¹, Zilong Zhang¹, Wenli Huang¹, Huawei Zhang¹, Yi Jiang¹,

Jianli Liu², Xiaomei Song^{1,*}, and Dongdong Zhang^{1,*}

 ¹ School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
 ² Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China

Table of Contents	page
Figure S1: The IR spectrum of 1 (in KBr)	3
Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)	4
Figure S3: The ¹ H NMR spectrum of 1 (in C_5D_5N)	5
Figure S4: The ¹³ C NMR spectrum of 1 (in C_5D_5N)	6
Figure S5: The ¹³ C NMR spectrum of 1 (in C ₅ D ₅ N) (From $\delta_{\rm C}$ 60 ppm to $\delta_{\rm C}$ 85 ppm)	7
Figure S6: The HSQC spectrum of 1 (in C_5D_5N)	8
Figure S7: The HSQC spectrum of 1 (in C ₅ D ₅ N) (From δ_C 15 ppm to δ_C 65 ppm)	9
Figure S8: The HSQC spectrum of 1 (in C ₅ D ₅ N) (From δ_C 65 ppm to δ_C 115 ppm)	10
Figure S9: The HMBC spectrum of 1 (in C ₅ D ₅ N)	11
Figure S10: The HMBC spectrum of 1 (in C ₅ D ₅ N) (From $\delta_{\rm H}$ 0.8 ppm to $\delta_{\rm H}$ 3.0 ppm)	12
Figure S11: The HMBC spectrum of 1 (in C ₅ D ₅ N) (From $\delta_{\rm H}$ 3.3 ppm to $\delta_{\rm H}$ 6.6 ppm)	13
Figure S12: The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of 1 (in C ₅ D ₅ N)	14
Figure S13: The NOESY spectrum of 1 (in C_5D_5N)	15
Figure S14: New compound search report of SciFinder	16
Figure S15: The IR spectrum of 2 (in KBr)	17
Figure S16: The HR-ESI-MS spectrum of 2 (in MeOH)	18
Figure S17: The ¹ H NMR spectrum of 2 (in C_5D_5N)	19
Figure S18: The 13 C NMR spectrum of 2 (in C ₅ D ₅ N)	20
Figure S19: The ¹³ C NMR spectrum of 2 (in C ₅ D ₅ N) (From $\delta_{\rm C}$ 15 ppm to $\delta_{\rm C}$ 85 ppm)	21
Figure S20: The HSQC spectrum of 2 (in C_5D_5N)	22
Figure S21: The HSQC spectrum of 2 (in C ₅ D ₅ N) (From δ_C 10 ppm to δ_C 65 ppm)	23
Figure S22: The HSQC spectrum of 2 (in C ₅ D ₅ N) (From $\delta_{\rm C}$ 60 ppm to $\delta_{\rm C}$ 125 ppm)	24
Figure S23: The HMBC spectrum of 2 (in C ₅ D ₅ N)	25
Figure S24: The HMBC spectrum of 2 (in C ₅ D ₅ N) (From $\delta_{\rm H}$ 2.2 ppm to $\delta_{\rm H}$ 4.5 ppm)	26
Figure S25: The HMBC spectrum of 2 (in C ₅ D ₅ N) (From $\delta_{\rm H}$ 4.6 ppm to $\delta_{\rm H}$ 8.2 ppm)	27

Figure S26: The NOESY spectrum of 2 (in C_5D_5N)	28
Figure S27: New compound search report of SciFinder	29
Figure S28: The ¹ H NMR spectrum of 3 (in pyridine- d_5)	30
Figure S29: The ¹³ C NMR spectrum of 3 (in pyridine- d_5)	31
Figure S30: The ¹ H NMR spectrum of 4 (in pyridine- d_5)	32
Figure S31: The ¹³ C NMR spectrum of 4 (in pyridine- d_5)	33
Figure S32: The ¹ H NMR spectrum of 5 (in pyridine- d_5)	34
Figure S33: The ¹³ C NMR spectrum of 5 (in pyridine- d_5)	35
Figure S34: Structure of similar compound (Ref)	36
Table S1: ¹³ C NMR data for compounds 1-5 and Ref.	37-38
Text S1: Detail experiments for Sugar analysis of compounds 1 and 2	39
Text S2: Cytotoxicity assay of compounds 1-5	39

© 2022 ACG Publications. All rights reserved

Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)

Figure S3: The ¹H NMR spectrum of **1** (in C_5D_5N)

Figure S4: The ¹³C NMR spectrum of **1** (in C_5D_5N)

© 2022 ACG Publications. All rights reserved

Figure S5: The ¹³C NMR spectrum of 1 (in C₅D₅N) (From δ_C 60 ppm to δ_C 85 ppm)

Figure S6: The HSQC spectrum of 1 (in C₅D₅N)

Figure S7: The HSQC spectrum of **1** (in C₅D₅N) (From δ_C 15 ppm to δ_C 65 ppm)

Figure S8: The HSQC spectrum of **1** (in C₅D₅N) (From δ_C 65 ppm to δ_C 115 ppm)

Figure S9: The HMBC spectrum of (in C_5D_5N)

Figure S10: The HMBC spectrum of **1** (in C₅D₅N) (From $\delta_{\rm H}$ 0.8 ppm to $\delta_{\rm H}$ 3.0 ppm)

Figure S11: The HMBC spectrum of **1** (in C₅D₅N) (From $\delta_{\rm H}$ 3.3 ppm to $\delta_{\rm H}$ 6.6 ppm)

Figure S12: The 1 H- 1 H COSY spectrum of **1** (in C₅D₅N)

Figure S13: The NOESY spectrum of (in C₅D₅N)

Select All Deselect All

1 of 9	9 Similarity Candidates Selected	Substances
 Image: A set of the set of the	≥ 99 (most similar)	1
	95-98	44
	90-94	940
	85-89	1417
	80-84	2766
	75-79	9726
	70-74	19124
	65-69	40019
	0-64 (least similar)	110805

Get Substances

Figure S14: New compound search report of SciFinder

Figure S15: The IR spectrum of 2 (in KBr)

© 2022 ACG Publications. All rights reserved

Figure S16: The HR-ESI-MS spectrum of 2 (in MeOH)

Figure S17: The ¹H NMR spectrum of **2** (in C₅D₅N)

Figure S18: The 13 C NMR spectrum of **2** (in C₅D₅N)

© 2022 ACG Publications. All rights reserved

Figure S19: The ¹³C NMR spectrum of **2** (in C₅D₅N) (From $\delta_{\rm C}$ 15 ppm to $\delta_{\rm C}$ 85 ppm)

Figure S20: The HSQC spectrum of 2 (in C₅D₅N)

Figure S21: The HSQC spectrum of 2 (in C₅D₅N) (From $\delta_{\rm C}$ 10 ppm to $\delta_{\rm C}$ 65 ppm)

Figure S22: The HSQC spectrum of **2** (in C₅ D₅N) (From $\delta_{\rm C}$ 60 ppm to $\delta_{\rm C}$ 125 ppm)

Figure S23: The HMBC spectrum of 2 (in C₅D₅N)

Figure S24: The HMBC spectrum of **2** (in C₅D₅N) (From $\delta_{\rm H}$ 2.2 ppm to $\delta_{\rm H}$ 4.5 ppm)

Figure S25: The HMBC spectrum of **2** (in C₅D₅N) (From $\delta_{\rm H}$ 4.6 ppm to $\delta_{\rm H}$ 8.2 ppm)

Figure S26: The NOESY spectrum of 2 (in C_5D_5N)

Delect All Deselect All

0 of 9	9 Similarity Candidates Selected	Substances
	≥ 99 (most similar)	2
	95-98	56
	90-94	586
	85-89	1706
	80-84	5569
	75-79	11969
	70-74	19642
	65-69	48793
	0-64 (least similar)	136391

Get Substances

Figure S27: New compound search report of SciFinder

Figure S29: The ¹³C NMR spectrum of 3 (in pyridine- d_5)

Figure S30: The ¹H NMR spectrum of **4** (in pyridine- d_5)

© 2022 ACG Publications. All rights reserved

Figure S31: The ¹³C NMR spectrum of 4 (in pyridine-*d*₅)

© 2022 ACG Publications. All rights reserved

Figure S32: The ¹H NMR spectrum of **5** (in pyridine- d_5)

© 2022 ACG Publications. All rights reserved

Figure S33: The ¹³C NMR spectrum of **5** (in pyridine- d_5)

Figure S34: Structure of similar compound (Ref)

 $(23S,24S)-24-\{[O-\beta-D-glucopyranosyl-(1\rightarrow 4)-\beta-D-fucopyranosyl]oxy\}-3\beta,23$ dihydroxyspirosta-5,25(27)-dien-1 β -ylO- β -D-apiofuranosyl-(1 \rightarrow 3)-O-(4-O-acetyl- α -Lrhamnopyranosyl)-(1 \rightarrow 2)-O- α -L-arabinopyranoside (Ref is similar to compounds 1 and 2) Zhang H., Su Y.F., Yang F.Y., et al. Six new steroidal saponins from *Helleborus thibetanus Helv. Chim. Acta.* 2014, **97(12)**, 1652-1665.

Position	1	2	3	4	5	Ref.
1	84.3	84.1	83.8	84.7	84.8	83.8
2	37.9	38.0	38.3	38.3	38.5	37.8
3	68.7	68.5	68.5	68.5	67.6	68.0
4	44.3	44.5	44.4	44.4	43.3	43.9
5	140.2	140.1	140.0	140.0	139.8	139.5
6	125.1	125.3	125.4	125.4	125.4	124.8
7	32.4	32.5	32.5	32.4	32.4	32.0
8	33.4	33.5	33.5	33.5	33.6	33.0
9	50.9	50.8	50.9	50.8	50.9	50.4
10	43.4	43.4	43.4	43.4	42.9	42.9
11	24.4	24.4	24.4	24.4	24.5	23.9
12	40.9	40.9	41.0	41.2	40.6	40.4
13	41.3	41.3	41.3	40.9	41.4	40.8
14	57.2	57.2	57.2	57.2	57.5	56.7
15	32.8	32.9	32.9	32.9	32.8	32.4
16	83.5	83.5	83.5	83.0	84.4	83.0
17	62.0	62.1	62.1	62.0	59.1	61.6
18	17.3	17.3	17.3	17.3	17.4	16.8
19	15.6	15.4	15.5	15.5	15.5	15.0
20	37.9	38.0	37.9	37.9	44.3	37.4
21	15.3	15.3	15.3	15.2	64.9	14.8
22	112.3	112.3	112.3	112.2	112.7	111.8
23	70.8	70.8	70.8	70.6	71.4	70.2
24	82.8	82.8	82.8	83.4	75.4	82.3
25	144.4	144.4	144.4	144.3	146.5	143.9
26	62.0	62.0	62.1	62.0	61.3	61.5
27	114.3	114.3	114.3	114.4	113.3	113.7
$CO\underline{C}H_3$	—	—	—		21.4	_
COCH ₃	—	—	—		171.1	_
1- <i>O</i> -Ara						
1	101.0	100.9	101.0	101.2	101.1	100.5
2	75.8	74.7	74.9	73.1	73.1	74.7
3	76.3	76.7	76.6	85.7	85.7	76.0
4	70.6	70.8	70.8	70.2	70.1	70.3
5	67.9	68.2	67.3	67.2	68.5	67.7
Rha						
1	102.0	101.4	101.5	101.3	101.3	100.9
2	72.3	72.8	71.3	71.6	71.4	71.5
3	80.6	70.5	78.4	78.3	78.3	78.0

 Table S1: ¹³C NMR data for compounds 1-5 and Ref.

4	73.0	76.9	75.1	75.0	75.1	74.4
5	70.0	67.1	68.2	67.6	67.2	66.8
6	19.5	18.8	18.8	18.9	18.9	18.3
$CO\underline{C}H_3$	—	21.5	21.6	21.6	21.6	21.0
COCH ₃	—	171.3	171.2	171.1	171.4	170.6
Api						
1	112.3	—	112.8	112.7	112.3	112.2
2	78.2	—	78.6	78.4	78.4	77.9
3	80.6	—	80.5	80.5	80.5	79.9
4	75.6	—	75.5	75.1	75.0	75.0
5	66.1	—	65.8	65.8	65.5	65.3
Xyl						
1	—	—		107.2	107.2	
2	—	—		75.9	74.3	
3	—	—		79.0	79.0	
4	—	—		72.1	72.1	
5	—	—		67.7	65.8	
24-0-Fuc						
1	106.6	106.5	106.5	—		106.0
2	74.2	74.2	74.2	—		73.7
3	76.0	76.0	76.0			76.2
4	83.8	83.8	84.4	—		83.3
5	71.2	71.3	72.0			70.8
6	18.0	18.0	18.0			17.4
Glc						
1	107.4	107.4	107.4	107.0		106.9
2	76.7	76.7	76.7	75.4		75.5
3	79.1	79.1	79.0	80.7		78.5
4	72.0	72.0	72.2	71.4		71.6
5	79.0	79.0	79.1	78.7		78.6
6	63.2	63.3	63.2	61.9		62.8

Text S1: Detail experiments for Sugar analysis of compounds 1 and 2

Compounds 1-2 (each 2 mg) were individually dissolved with 2 mol/L CF₃COOH (2 mL) at 100°C for 8 h. After dilution with H_2O (15 ml), the reaction mixture was extracted with EtOAc, yielding distinct EtOAc and H₂O phases. The latter was concentrated under reduced pressure by repeated mixing with methanol until the solvent was completely evaporated. The residue was dissolved in pyridine solution (1 mL) of L-cysteine methyl ester hydrochloride (2 mg/L). After heating at 60 °C for 1 h, the solvent was evaporated under N₂ protection. The reaction products were dissolved in the mixed solution of N-(trimethylsilyl)imidazole (0.2 mL) and anhydrous pyridine (2 mL), and the mixture was maintained at 60°C for 1 h, evaporated under a stream of N2, and dried in a vacuum. The residue was suspended in cyclohexane and water, the cyclohexane layer was the trimethylsilyl ether derivatives of monosaccharide. The mixture was filtered through a 0.45 μ m membrane to remove the precipitate and analyzed by GC under the following conditions: HP-5 capillary column ($30 \text{ m} \times 0.32 \text{ mm} \times 0.25 \mu \text{m}$); flame ionization detector; detector temperature = 280 °C; injection temperature = 250 °C; initial temperature = 100 °C for 2 min, followed by an increase to 280 °C at a rate of 10 °C/min; final temperature = 280 °C for 5 min; and N₂ gas as a carrier. The absolute configurations of sugars isolated from the hydrolysates of compounds 1 - 2 were determined by comparing the retention times (t_R) of their trimethylsilyl-L-cysteine derivatives with those of authentic sugars prepared by a similar procedure. Retention times for authentic sugars after being derivatized were follows: D-glucose, 45.2 min, D-fucose, 35.2 min; D-apiose, 11.2 min; L-arabinose, 12.2 min and L-rhamnopyranose, 14.5 min, respectively.

Text S2: Cytotoxicity assay

Cytotoxic was determined against HCT116, A549 and HepG2 tumor cell lines based on the MTT assay method *in vitro*, and 5-fluorouracil (5-Fu) was used as the positive control. Briefly, 1×10^4 mL⁻¹ cells were seeded into 96-well plates and allowed to adhere for 24 h. Compounds **1-5** were dissolved in DMSO and diluted with complete medium to six concentration levels (from 0.001 mmol·L⁻¹ to 0.3 mmol·L⁻¹) for inhibition rate determination. After incubation at 37 °C for 24 h, the supernatant was removed before adding DMSO (100 µL) to each well. The inhibition rate (IR) and IC₅₀ were calculated. Values are mean ± SD, n = 3, ** p < 0.01 vs. DMEM control.