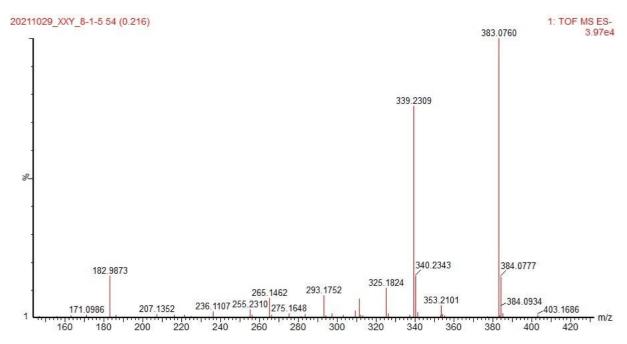
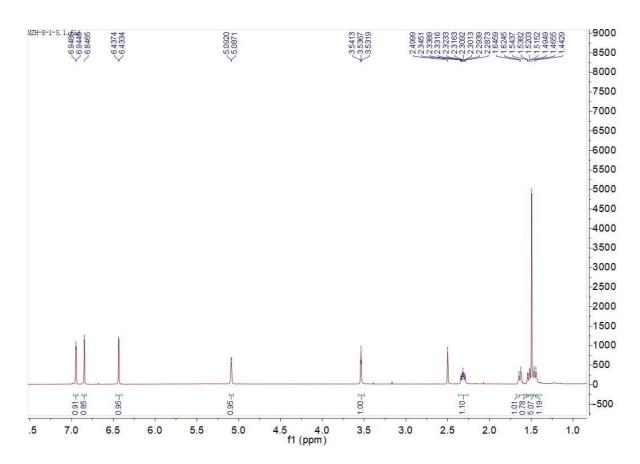
Supporting Information

Rec. Nat. Prod. 17:2 (2023) 343-351


Secondary Metabolites from Marine-Derived Fungus

Aspergillus carneus GXIMD00519


Chun-Ju Lu $^{\#}$, Zhen-Zhou Tang $^{\#}$, Zhi-Wei Su, Hai-Yan Li, Geng-Si Zhang, Cheng-Hai Gao 1 , Yong-Hong Liu 1* and Xin-Ya Xu 1*

Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P.R.China

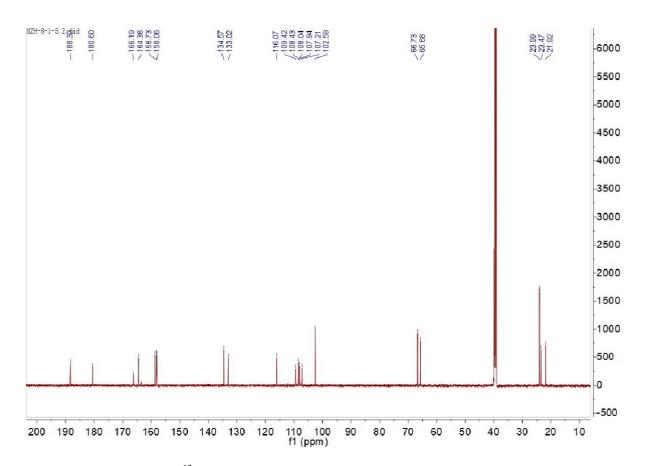
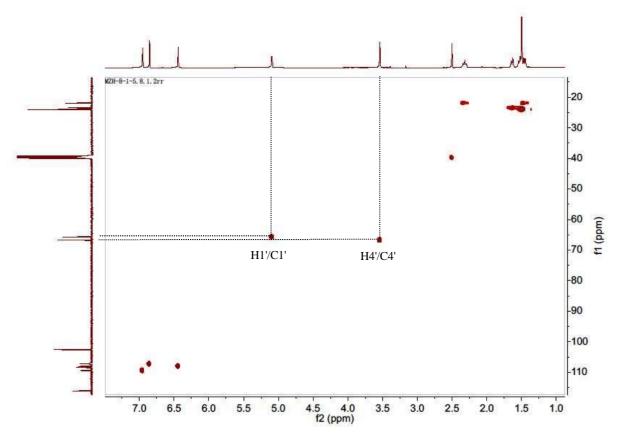
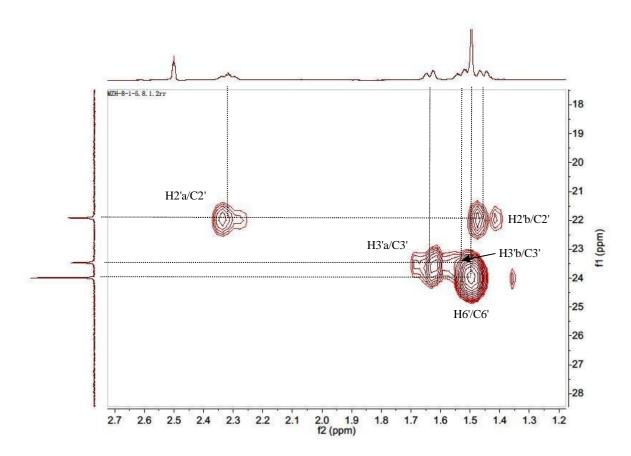
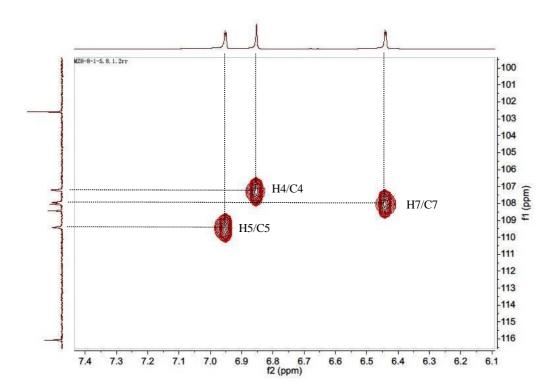
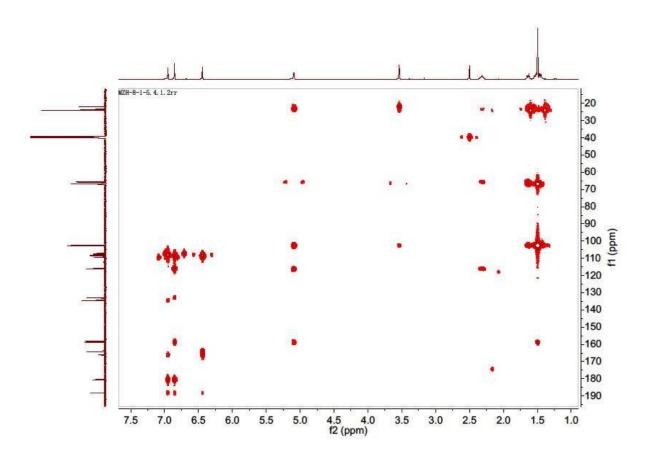

Table of Contents	Page
Figure S1: HR-ESI-MS spectrum of 1 (carneusin A)	2
Figure S2: ¹ H-NMR (600 MHz, DMSO-d ₆) spectrum of 1 (carneusin A)	3
Figure S3: ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of 1 (carneusin A)	4
Figure S4: HSQC spectrum of 1 (carneusin A)	5 6
Figure S5: HSQC spectrum of 1 (carneusin A) (From $\delta_C 18$ ppm to $\delta_C 28$ ppm)	6
Figure S6: HSQC spectrum of 1 (carneusin A) (From $\delta_{\rm C}100$ ppm to $\delta_{\rm C}116$ ppm)	7
Figure S7: HMBC spectrum of 1 (carneusin A)	8
Figure S8: HMBC spectrum of 1 (carneusin A) (From δ_C 15 ppm to δ_C 70 ppm)	9
Figure S9: HMBC spectrum of 1 (carneusin A) (From δ_C 100 ppm to δ_C 120 ppm)	10
Figure S10: HMBC spectrum of 1 (carneusin A) (From δ_C 125 ppm to δ_C 195 ppm)	11
Figure S11: ¹ H- ¹ H COSY spectrum of 1 (carneusin A)	12
Figure S12: NOESY spectrum of 1 (carneusin A)	13
Figure S13: HR-ESI-MS spectrum of 2 (carneusin B)	14
Figure S14: ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of 2 (carneusin B)	15
Figure S15: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 2 (carneusin B)	16
Figure S16: HSQC spectrum of 2 (carneusin B)	17
Figure S17: HMBC spectrum of 2 (carneusin B)	18
Figure S18 : HMBC spectrum of 2 (carneusin B) (From $\delta_{\rm C}$ 5 ppm to 45 ppm)	19
Figure S19: HMBC spectrum of 2 (carneusin B) (From δ_C 120 ppm to 190 ppm)	20
Table S1 : Relative free energies ^a and equilibrium populations ^b of conformers for (1'S, 4'S, 5'S)-1 ^c	21
Figure S20: The optimized structures (left) and the calculated CD spectra of conformers (1'S,	21
4'S, 5'S)-1 in MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.22 \text{ eV}$	
Table S2 : Relative free energies ^a and equilibrium populations ^b of conformers for (6S)-2 ^c	22
Figure S21: The optimized structures (left) and the calculated CD spectra of conformers (6S)-2 in	23
MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.3 \text{ eV}$	
Figure S22: DP4+ probabilities (%) for conformers (6 <i>S</i>)-2 (isomer 1) and (6 <i>R</i>)-2 (isomer 2)	24
Figure S23: The Scifinder searching results of compound 1	25
Table S3 : The structural comparison of similar compounds with 1	26
Figure S24: The Scifinder searching results of compound 2	27
Table S4 : The structural comparison of similar compounds with 2	28
Table S5: The NMR data comparison of similar compounds with 1	29
•	

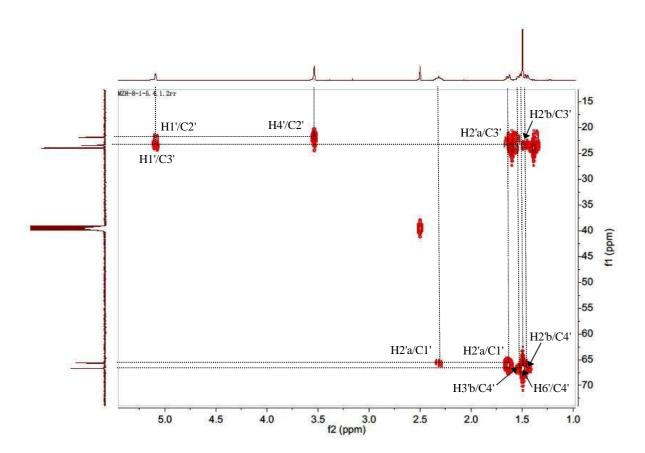
Figure S1: HR-ESI-MS spectrum of **1** (carneusin A)

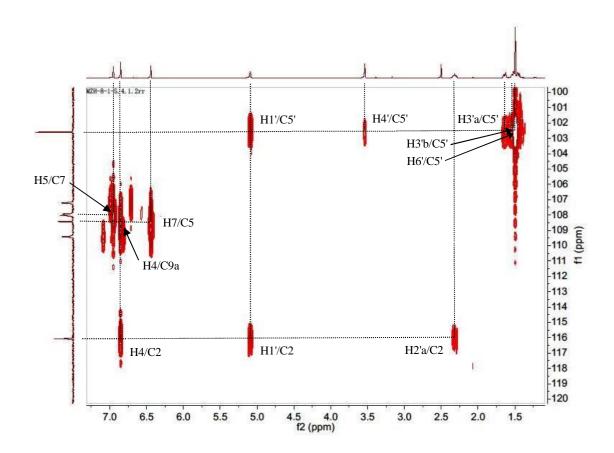
Figure S2: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **1** (carneusin A)

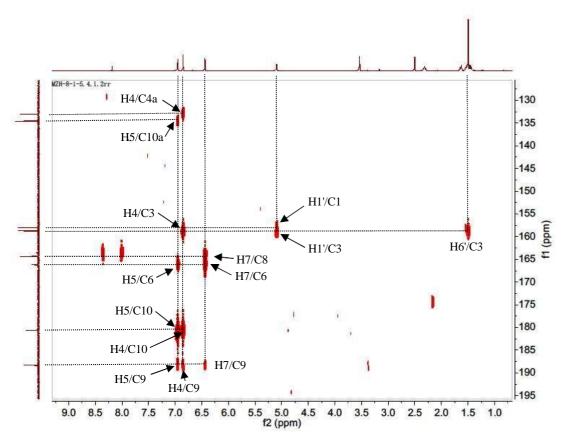
Figure S3: ¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum of **1** (carneusin A)


Figure S4: HSQC spectrum of 1 (carneusin A)


Figure S5: HSQC spectrum of **1** (carneusin A) (From $\delta_{\rm C}$ 18 ppm to $\delta_{\rm C}$ 28 ppm)


Figure S6: HSQC spectrum of **1** (carneusin A) (From $\delta_{\rm C}100$ ppm to $\delta_{\rm C}116$ ppm)


Figure S7: HMBC spectrum of **1** (carneusin A)

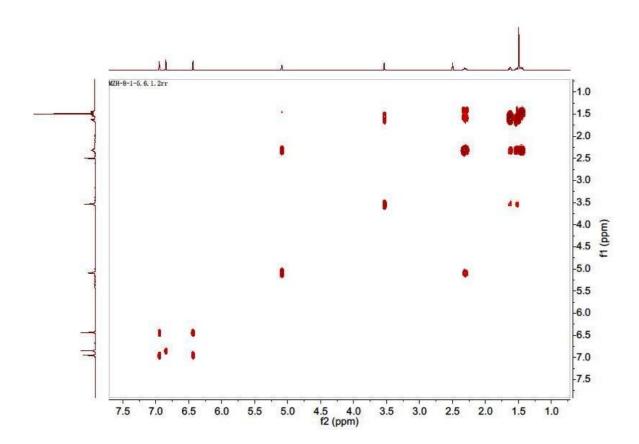

Figure S8: HMBC spectrum of **1** (carneusin A) (From δ_C 15 ppm to δ_C 70 ppm)

Figure S9: HMBC spectrum of **1** (carneusin A) (From $\delta_{\rm C}$ 100 ppm to $\delta_{\rm C}$ 120 ppm)

Figure S10: HMBC spectrum of **1** (carneusin A) (From δ_C 125 ppm to δ_C 195 ppm)

Figure S11: ¹H-¹H COSY spectrum of **1** (carneusin A)

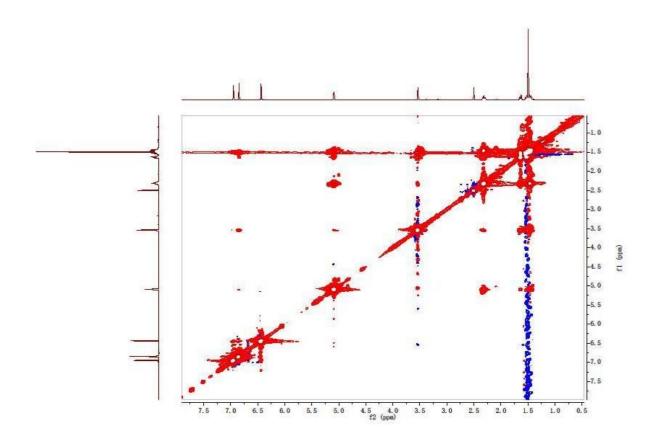


Figure S12: NOESY spectrum of 1 (carneusin A)

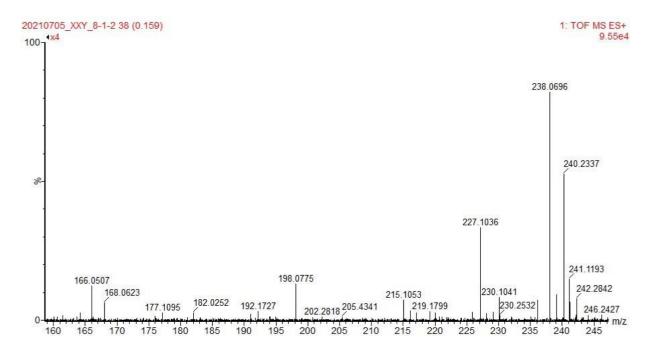
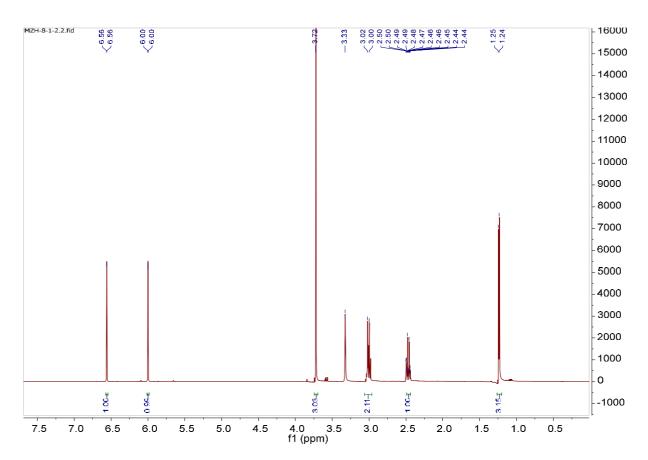
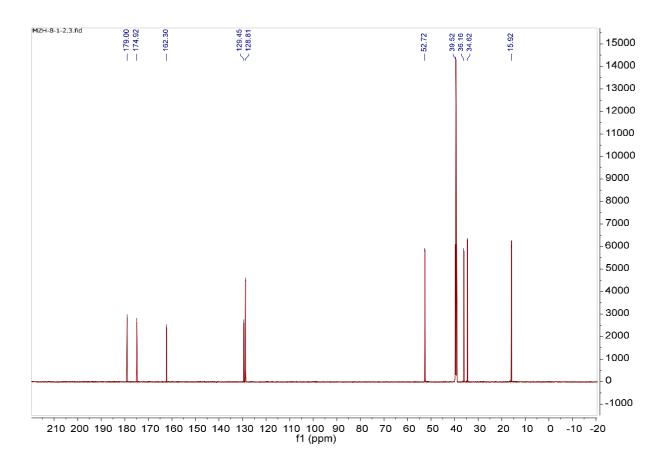




Figure S13: HR-ESI-MS spectrum of 2 (carneusin B)

Figure S14: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **2** (carneusin B)

Figure S15: ¹³C-NMR (150 MHz, CDCl₃) spectrum of **2** (carneusin B)

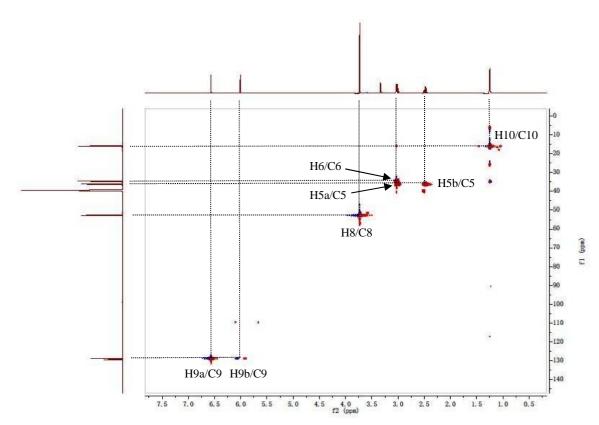


Figure S16: HSQC spectrum of 2 (carneusin B)

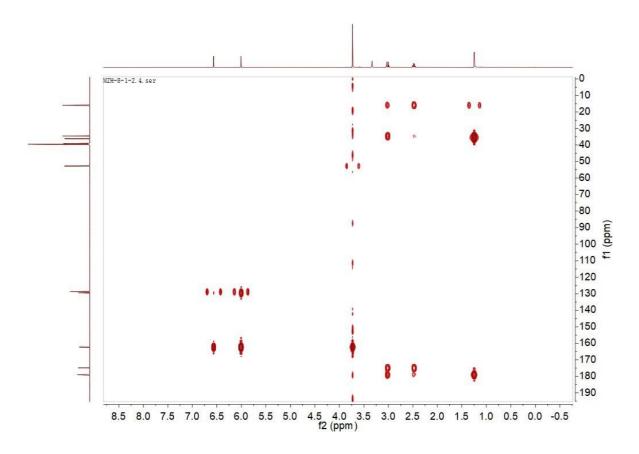
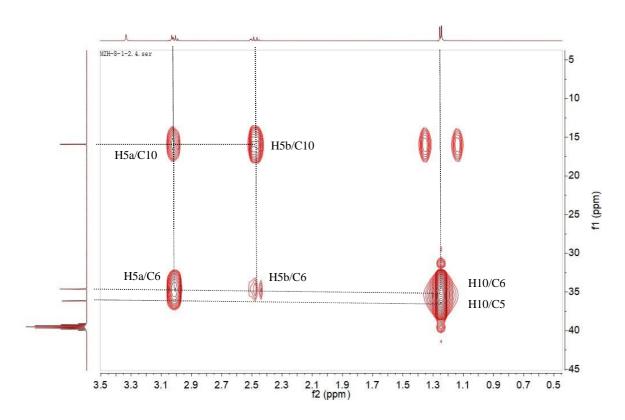
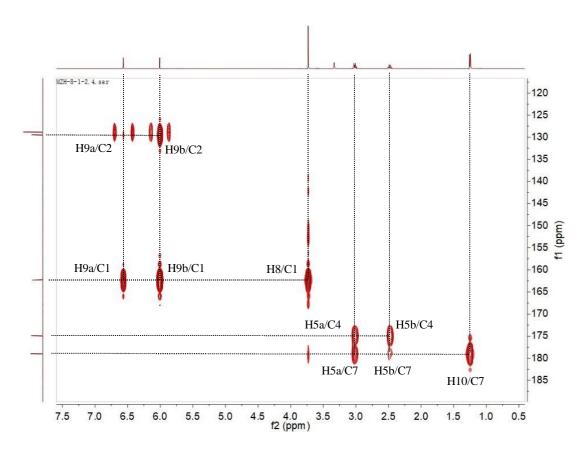




Figure S17: HMBC spectrum of 2 (carneusin B)

Figure S18: HMBC spectrum of **2** (carneusin B) (From $\delta_{\rm C}$ 5 ppm to 45 ppm)

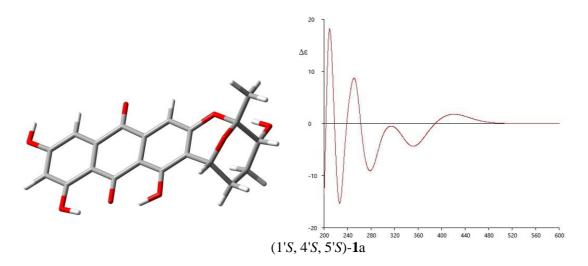


Figure S19: HMBC spectrum of **2** (carneusin B) (From $\delta_{\rm C}$ 120 ppm to 190 ppm)

Table S1: Relative free energies^a and equilibrium populations^b of conformers for (1'S, 4'S, 5'S)-1^c

conformer	$\Box G$	P (%)
1 a	0.00	100.00

^a B3LYP/6-31G(d), in kcal/mol. ^b From $\square G$ values at 298.15 K. ^c in MeOH, no imaginary frequency

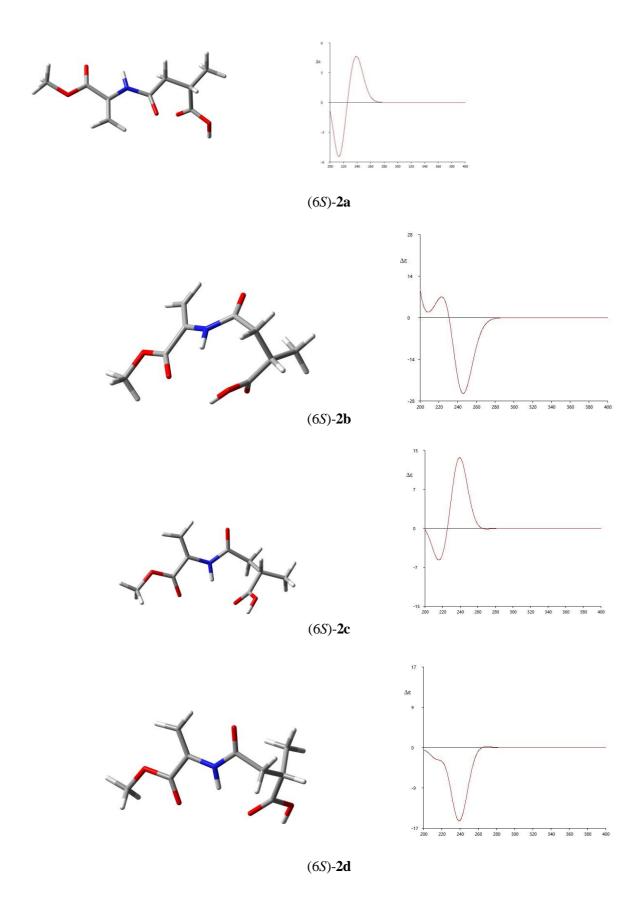


Figure S20: The optimized structures (left) and the calculated CD spectra of conformers (1'S 4'S, 5'S)-1 in MeOH at M06-2X/def2TZVP level (right). σ =0.22 eV

Table S2: Relative free energies and equilibrium populations of conformers for (6S)- 2^c

conformer	ΔG	P (%)	
2 a	0.00	69.13	
2 b	1.03	11.98	
2c	1.15	9.86	
2d	1.20	9.03	

^a B3LYP/6-31G(d), in kcal/mol. ^b From □*G* values at 298.15 K. ^c in MeOH, no imaginary frequency

 $\label{eq:Figure S21:The optimized structures (left) and the calculated CD spectra of conformers (6S)-2 in MeOH at M06-2X/def2TZVP level (right). $\sigma = 0.3$ eV$

© 2022 ACG Publications. All rights reserved.

	25	DP4+	4 89. 54%	₫ 10. 46%
Nuclei	sp2?	xperimenta	Isomer 1	Isomer 2
C	X	174.92	173.925	173.405
C		36.16	40.254	39.546
C		34. 62	36.852	35.959
C	x	179	182.141	181.509
C		15.92	15. 798	15.255
C	x	129.45	134.359	134.334
C	х	162.3	168.816	168.733
C	х	128. 81	106.88	106.844
C		52.72	53. 321	53.359

Figure S22: DP4+ probabilities (%) for conformers (6*S*)-2 (isomer 1) and (6*R*)-2 (isomer 2)

Score: 95 28458-23-3 Absolute stereochemistry

2,6-Epoxy-2*H*-anthra[2,3-*b*]oxocin-8,13-dione, 3,4,5,6-tetrahydro-5,7,9,11-tetrahydroxy-2methyl-, (2S,5S,6R)-

Key Physical Properties:

Molecular Weight

384.34

Melting Point (Experimental)

Value: 203-206 °C **Boiling Point (Predicted)**

Value: 659.2±55.0 °C | Condition: Press: 760

Density (Predicted)

Value: 1.676±0.06 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr

Value: 5.70±0.60 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 55 References

Reactions

~ 2 Commercial Sources

Experimental Properties

Score: 95

93922-50-0

Absolute stereochemistry

2,6-Epoxy-2*H*-anthra[2,3-*b*]oxocin-8,13-dione, 3,4,5,6-tetrahydro-5,7,9,11-tetrahydroxy-2methyl-, $[2S-(2\alpha,5\beta,6\alpha)]$ - (9CI)

Key Physical Properties:

Molecular Weight

384.34

Boiling Point (Predicted)

Value: 659.2±55.0 °C | Condition: Press: 760

Density (Predicted)

Value: 1.676±0.06 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr

pKa (Predicted)

Value: 5.70±0.60 | Condition: Most Acidic Temp:

~ 1 References

Score: 95

99528-66-2

Relative stereochemistry.

C₂₀ H₁₆ O₈ 2,6-Epoxy-2*H*-anthra[2,3-*b*]oxocin-8,13-dione, 3,4,5,6-tetrahydro-5,7,9,11-tetrahydroxy-2methyl-, (2R,5R,6S)-rel-

Key Physical Properties:

Molecular Weight

384.34

Boiling Point (Predicted)

Value: 659.2±55.0 °C | Condition: Press: 760

Density (Predicted)

Value: 1.676±0.06 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr

pKa (Predicted)

Value: 5.70±0.60 | Condition: Most Acidic Temp: 25 °C

~ 2 References Reactions

SciFinder® Page 2

Score: 95

99528-67-3

Relative stereochemistry.

 ${
m C_{20}~H_{16}~O_8}$ 2,6-Epoxy-2*H*-anthra[2,3-*b*]oxocin-8,13-dione, 3,4,5,6-tetrahydro-5,7,9,11-tetrahydroxy-2-methyl-, (2*R*,5*S*,6*S*)-*rel*-

Key Physical Properties:

Molecular Weight

Boiling Point (Predicted)

Value: 659.2±55.0 °C | Condition: Press: 760

Density (Predicted)

Value: 1.676±0.06 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr pKa (Predicted) Value: 5.70±0.60 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 1 References Reactions Spectra

Score: 93

14016-29-6

Absolute stereochemistry

C20 H16 O7

2,6-Epoxy-2*H*-anthra[2,3-*b*]oxocin-8,13-dione, 3,4,5,6-tetrahydro-7,9,11-trihydroxy-2-methyl-,

Key Physical Properties:

Molecular Weight

368 34

Melting Point (Experimental)

Value: 288-293 °C

Boiling Point (Predicted)

Value: 602.9±55.0 °C | Condition: Press: 760

Density (Predicted)

Value: 1.585±0.06 g/cm3 | Condition: Temp: 20 °C Press: 760 Torr

pKa (Predicted)

Value: 5.83±0.40 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 201 References

Reactions

~ 7 Commercial Sources **Experimental Properties**

Score: 93

79896-28-9

 $\begin{array}{l} \mathbf{C_{20}} \ \mathbf{H_{16}} \ \mathbf{O_{7}} \\ 2\text{,} 6\text{-Epoxy-} 2\textit{H-} \\ \text{anthra} [2\text{,} 3\text{-}\textit{b}] \\ \text{oxocin-8,13-dione,} \\ 3\text{,} 4\text{,} 5\text{,} 6\text{-tetrahydro-7,9,11-trihydroxy-2-methyl-} \end{array}$

Key Physical Properties:

Molecular Weight

368.34

Melting Point (Experimental)

Value: 282-288 °C (decomp) | Condition: Solv: chloroform (67-66-3)

Boiling Point (Predicted)

Value: 602.9±55.0 °C | Condition: Press: 760

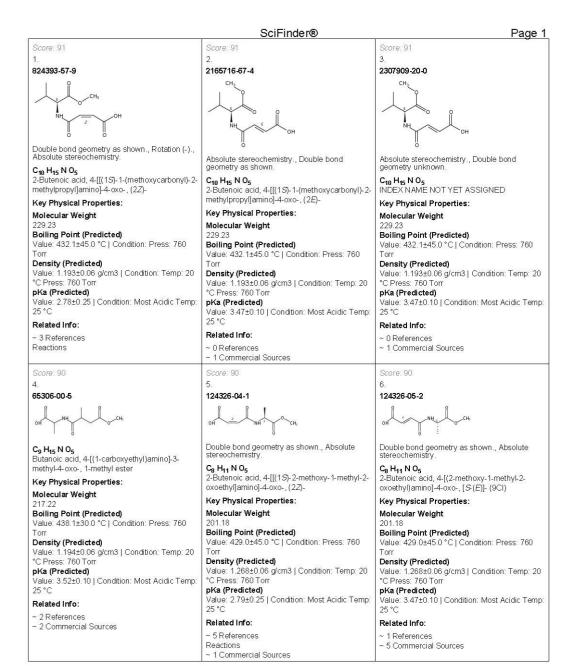
Density (Predicted)
Value: 1.585±0.06 g/cm3 | Condition: Temp: 20
°C Press: 760 Torr

pKa (Predicted)

Value: 5.83±0.40 | Condition: Most Acidic Temp: 25 °C

Related Info:

~ 16 References


Reactions - 3 Commercial Sources

Experimental Properties

Figure S23: The Scifinder searching results of compound 1

 $\label{eq:Table S3: The structural comparison of similar comounds with 1}$

No.	Similarity score	Similar chemical structure and CAS number	compound 1	
1	95	HO OH OH H OH	OH	
		CAS NO. 28458-23-3		
		Absolute stereochemistry		
2	95	HO OH OH HO OH H		
		CAS NO. 93922-50-0		
		Absolute stereochemistry		
3	95	HO OH H OH H OH	ОН ОН Й	
		CAS NO. 99528-66-2		
		Relative stereochemistry		
4	95	HO OH H OH	HO OH OH H	
		CAS NO. 99528-67-3		
		Relative stereochemistry		

Copyright © 2022 American Chemical Society (ACS). All Rights Reserved.

Figure S24: The Scifinder searching results of compound 2

 $\label{eq:Table S4: The structural comparison of similar compounds with 2}$

No.	Similarity score	Chemical structure and CAS number	AS Chemical structure of compound 2	
1	91	CAS NO. 824393-57-9 Absolute stereochemistry	O H OH	
2	91	CAS NO. 2165716-67-4 Absolute stereochemistry	OH H OH	
3	91	CAS NO. 2307909-20-0 Absolute stereochemistry	O N OH	

Table S5: The NMR data comparison of similar compounds with 1

Position	Compound 1 a			2'-epinidurufin ^c		
	_	(CAS NO. 28458-23-3)		(CAS NO. 93922-50-0)		
	δ_{H}	$\delta_{\rm C}$ (mult.)	δ_{H}	$\delta_{\rm C}$ (mult.)	$\delta_{\rm H}$	δ _C (mult.)
1	-	158.1 (C)	-	159.8 (C)	NMR dat	a is not
2	-	116.1 (C)	-	115.0 (C)	available	
3	-	158.7 (C)	-	158.4 (C)		
4	6.85, <i>s</i>	107.2 (CH)	6.85, s	107.4 (CH)		
4a	-	133.0 (C)	-	134.6 (C)		
5	6.94, d, J = 2.4	109.4 (CH)	6.97, s	108.9 (CH)		
6	-	166.2 (C)	-	164.2 (C)		
7	6.43, d, J = 2.4	107.9 (CH)	6.49, s	108.0 (CH)		
8	-	164.4 (C)	-	165.2 (C)		
8a	-	108.0 (C)	-	108.5 (C)		
9	-	188.3 (C)	-	188.6 (C)		
9a	-	108.4 (C)	-	108.2 (C)		
10	-	180.6 (C)	-	180.5 (C)		
10a	-	134.6 (C)	-	133.1 (C)		
1'	5.09, d, J = 3.0	65.7 (CH)	5.36,	70.7 (CH)		
			overlapped			
2'	2.32, ddt, J =	21.9 (CH ₂)	3.75, m	63.5 (CH)		
	17.3, 8.3, 3.8					
	1.45, d, J =					
	13.6					
3'	1.64, <i>d</i> , <i>J</i> = 13.0	23.5 (CH ₂)	2.16, m	30.2 (CH ₂)		
	1.53, <i>td</i> , <i>J</i> = 13.0, 3.2		1.82, m			
4'	3.55, t, J = 2.8	66.7 (CH)	1.57, m	22.7 (CH)		
5'	-	102.6 (C)	-	101.5 (C)		
6'	1.49, <i>s</i>	24.0 (CH ₃)	1.54, s	27.2 (CH ₃)		

a in DMSO-d₆.

^b reference: X. W. Luo, H. M. Lu, X. Q. Chen, X. F. Zhou, C. H. Gao and Y. H. Liu (2020). Secondary metabolites and their biological activities from the sponge derived fungus *Aspergillus versicolor*, *Chem. Nat. Comp.* **56**, 716-719.

^c reference: R. A. Murphy Jr and M. P. Cava (1984). Stereochemistry of nidurufin: synthesis of 6,8-dideoxynidurufin and 6,8-dideoxyepinidurufin, *J. Am. Chem. Soc.* **106**, 7630-7632.