Supporting Information

Rec. Nat. Prod. 17:2 (2023) 367-371

Polyketides and Alkaloids from the Fungus Penicillium sp.

Yifang Chen, Ying Lu, Jianyong Zhao and Qian Chen*

The First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China

Table of Contents	Page					
Figure S1: ¹ H NMR spectrum of 1 in methanol- d_4 (400 MHz)						
Figure S2: ¹³ C NMR spectrum of 1 in methanol- d_4 (100 MHz)						
Figure S3: HSQC spectrum 1 in methanol- d_4						
Figure S4: HMBC spectrum of 1 in methanol- d_4						
Figure S5: ¹ H NMR spectrum of 2 in methanol- d_4 (400 MHz)						
Figure S6: ¹³ C NMR spectrum of 2 in methanol- d_4 (100 MHz)						
Figure S7 : HSQC spectrum of 2 in methanol- d_4						
Figure S8: COSY spectrum of 2 in methanol- d_4						
Figure S9: HMBC spectrum of 2 in methanol- d_4						
Figure S10 : NOESY spectrum of 2 in methanol- d_4	6					
Figure S11: ¹ H NMR spectrum of 3 in methanol- d_4 (400 MHz)	7					
Figure S12: ¹³ C NMR spectrum of 3 in methanol- d_4 (100 MHz)	7					
Figure S13: ¹ H NMR spectrum of 4 in methanol- d_4 (400 MHz)	8					
Figure S14: ¹³ C NMR spectrum of 4 in methanol- d_4 (100 MHz)	8					
Figure S15: ¹ H NMR spectrum of 5 in methanol- d_4 (400 MHz)	9					
Figure S16: ¹³ C NMR spectrum of 5 in methanol- d_4 (100 MHz)	9					
Figure S17: ¹ H NMR spectrum of 6 in methanol- d_4 (400 MHz)	10					
Figure S18: ¹³ C NMR spectrum of 6 in methanol- d_4 (100 MHz)	10					
Figure S19: ¹ H NMR spectrum of 7 in DMSO- <i>d</i> ₆ (400 MHz)	11					
Figure S20: ¹³ C NMR spectrum of 7 in DMSO- d_6 (100 MHz)	11					
Figure S21: ¹ H NMR spectrum of 8 in DMSO- <i>d</i> ₆ (400 MHz)	12					
Figure S22: ¹³ C NMR spectrum of 8 in DMSO- <i>d</i> ₆ (100 MHz)	12					
Figure S23: HRESIMS spectrum of 1	13					
Figure S24: HRESIMS spectrum of 2	13					
Figure S25: Scifinder similarity report of compound 1	14					
Figure S26: Scifinder similarity report of compound 2	15					
Table S1: NMR data of new compounds 1 and 2 and the similar compounds 1aand 3	16					

© 2022 ACG Publications. All rights reserved

Figure S3: HSQC spectrum of 1 in methanol- d_4 .

Figure S4: HMBC spectrum of 1 in methanol- d_4 .

© 2022 ACG Publications. All rights reserved

Figure S7: HSQC spectrum of 2 in methanol- d_4

Figure S8: ¹H-¹H COSY spectrum of **2** in methanol- d_4

Figure S9: HMBC spectrum of 2 in methanol-d₄

Figure S10: NOESY spectrum of 2 in methanol- d_4

© 2022 ACG Publications. All rights reserved

© 2022 ACG Publications. All rights reserved

Figure S24: HRESIMS spectrum of 1

Figure S25: Scifinder similarity report of compound 1

Figure S26: Scifinder similarity report of compound 2

Table S1: NMR data of new compounds 1 and 2 and the similar compounds 1a and 3

No.	1		1a		2		3	
	δ_{H}	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$	δ_{H}	$\delta_{\rm C}$
1	6.47, br s	107.8	6.47	102.1				
2		152.6		155.7		165.2		165.1
3						124.6		124.4
4		167.3		166.9	7.32, d (6.9)	142.4	7.30, d (6.9)	142.3
5		99.8		99.8	6.26, d (6.9)	106.7	6.25, d (6.9)	106.6
6		164.6		165.0		159.0		159.0
7	6.34, br s	102.9	6.30	103.8	6.25, d (15.8)	119.6	6.23, d (15.8)	119.4
8		167.5		167.0	7.04, d (15.8)	138.7	7.04, d (15.8)	138.8
9	6.34, br s	104.0	6.33	105.9		137.0		136.6
10		141.0		141.8	5.75, d (9.9)	136.0	5.78, d (9.8)	136.6
11	3.52, br s	40.3	2.22	19.0	3.42, ddd	48.0	3.34, ddd (9.8,	471
11					(9.9, 7.2, 7.2)		7.2, 7.2)	4/.1
12		173.0			1.83, m	27.1	1.83, m	27.2
					1.61, m		1.61, m	
13					0.93, t (7.4)	11.9	0.94, t (7.4)	12.0
14						175.7		177.2
15					1.88, s	12.7	1.89, s	12.7
16					2.06, s	16.6	2.06, s	16.7
OCH ₃	ł				3.70, s	52.4		