Supporting Information

Rec. Nat. Prod. 17:2 (2023) 382-387

 Todasinoid A, a New Eremophilane-type Sesquiterpene from

 Todasinoid A, a New Eremophilane-type Sesquiterpene from the Plant Toddalia asiatica

Lijing Cai, Mengying Zhang, Jie He and Tingting Lin
Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, People's Republic of China.

Table of Contents	Page
Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(400 \mathrm{MHz})$	2
Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(100 \mathrm{MHz})$	2
Figure S3: HSQC spectrum of $\mathbf{1}$ in DMSO- d_{6}	3
Figure S4: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ in DMSO- d_{6}	3
Figure S5: HMBC spectrum of $\mathbf{1}$ in DMSO- d_{6}	4
Figure S6: NOESY spectrum of $\mathbf{1}$ in DMSO- d_{6}	4
Figure S7: HRESIMS data of 1	5
Figure S8: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$	5
Figure S9: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$	6
Figure S10: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$	6
Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$	7
Figure S12: ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in $\mathrm{CD}_{3} \mathrm{OD}(400 \mathrm{MHz})$	7
Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of 6 in $\mathrm{CD}_{3} \mathrm{OD}(400 \mathrm{MHz})$	8
Figure S14: ${ }^{13} \mathrm{C}$ NMR spectrum of 6 in $\mathrm{CD}_{3} \mathrm{OD}(100 \mathrm{MHz})$	8
Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$	9
Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in Pyr- $d_{5}(400 \mathrm{MHz})$	9
Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$ in Pyr- $d_{5}(100 \mathrm{MHz})$	10
Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum of 9 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$	10
Figure S19: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9}$ in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$	11
Table S1: Comparison of NMR data of $\mathbf{1}$ and an anolog in literature	12

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(400 \mathrm{MHz})$

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in DMSO- $d_{6}(100 \mathrm{MHz})$

Figure S3: HSQC spectrum of $\mathbf{1}$ in DMSO- d_{6}

Figure S4: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$ in DMSO- d_{6}

Figure S5: HMBC spectrum of $\mathbf{1}$ in DMSO- d_{6}

Figure S6: NOESY spectrum of $\mathbf{1}$ in DMSO- d_{6}

Figure S7: HRESIMS data of $\mathbf{1}$

Figure S8: ${ }^{1} \mathrm{H}$ NMR spectrum of 2 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S9: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}

```
N~~
```


Figure S10: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S12: ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in $\mathrm{CD}_{3} \mathrm{OD}(400 \mathrm{MHz})$

$\stackrel{\circ}{\infty}$

7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.03 .5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of 6 in $\mathrm{CD}_{3} \mathrm{OD}(400 \mathrm{MHz})$

Figure S14: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$ in $\mathrm{CD}_{3} \mathrm{OD}(100 \mathrm{MHz})$

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in $\operatorname{Pyr}-d_{5}(400 \mathrm{MHz})$

Figure S17: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$ in $\mathrm{Pyr}-d_{5}$

Figure S18: ${ }^{1} \mathrm{H}$ NMR spectrum of 9 in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

Figure S19: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9}$ in $\mathrm{CDCl}_{3}(100 \mathrm{MHz})$

Table S1: Comparison of NMR data of $\mathbf{1}$ and an anolog in literature

(3S)-3-acetoxyeremophil-7(11),9(10)-dien-8-one

1			(3S)-3-acetoxyeremophil-7(11),9(10)-dien-8-one	
No.	$\delta_{\mathrm{H}, \mathrm{mult}}$ (J in Hz) $^{\text {c }}$	δ_{c}, type		$\delta_{\text {c }}$, type
1	$\begin{aligned} & \beta 2.96, \mathrm{~d}(14.7) \\ & \alpha 2.33, \mathrm{~d}(14.7) \end{aligned}$	32.3, CH_{2}	$\begin{aligned} & \hline 2.24, \mathrm{~m} \\ & 1.66, \mathrm{~m} \end{aligned}$	26.77, CH_{2}
2	3.31, br s	44.4, CH	$\begin{aligned} & 1.89, \mathrm{~m} \\ & 1.75, \mathrm{~m} \end{aligned}$	30.41, CH_{2}
3	4.89, br s	74.8, CH	4.93, d (3.2)	72.68, CH
4	2.15, m	37.9, CH	1.12, dd (7.2, 3.3)	43.95, CH
5		40.4, C		40.91, C
6	$\begin{aligned} & \beta 2.97, \mathrm{o} \\ & \alpha 1.98, \mathrm{o} \end{aligned}$	35.7, CH_{2}	$\begin{aligned} & 2.66, \mathrm{~d}(13.6) \\ & 1.81, \mathrm{~d}(13.6) \end{aligned}$	41.56, CH_{2}
7		127.6, C		127.85, C
8		190.5, C		190.05, C
9	5.72, s	127.4, CH	5.90, s	126.82, CH
10		164.4, C		164.96, C
11		145.4, C		141.96, C
12	4.10 d (13.1)	61.5, CH_{2}	1.65, s	22.60, CH_{2}
13	1.99, s	17.4, CH_{3}	1.54, s	$21.57, \mathrm{CH}_{3}$
14	1.05, s	17.9, CH_{3}	1.01, s	18.07, CH_{3}
15	0.94, d (6.9)	11.1, CH_{3}	0.73, s	11.14, CH_{3}
$1{ }^{\prime}$	2.92, m	35.7, CH_{2}		
2^{\prime}	4.08, m	70.2, CH		
3^{\prime}		173.9, C		
1 '	2.08, s	20.8, CH_{3}	2.27, s	20.36, CH_{3}
$2^{\prime \prime}$		169.9, C		169.2, C

