Supporting Information

Org. Commun. 16:4 (2023) 175-186

Water extract of onion: chemoselective synthesis of 2-substituted benzimidazole derivatives

Ayyavu Boomathi, Kaliyan Prabakaran, Govindaraj Mahalakshmi,

Selvaraj Loganathan, Eswaran Rajendran and Muthu Seenivasa Perumal*

Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul district, Tamilnadu-624 302, India

Table of Contents	Page
S1: Preparation and Standardization of Onion Extract ¹	3
Figure S1: Metabolic pathway of onion	3
Figure S2: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3a	4
Figure S3: 13 C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3a	4
Figure S4: HSQC Spectrum of compound 3a	5
Figure S5: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3b	6
Figure S6: ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3b	6
Figure S7: Mass Spectrum of compound 3b	7
Figure S8: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3 c	8
Figure S9: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3c	8
Figure S10: Mass Spectrum of compound 3c	9
Figure S11: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3d	10
Figure S12: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3d	10
Figure S13: Mass Spectrum of compound 3d	11
Figure S14: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3e	12
Figure S15: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3e	12
Figure S16: Mass Spectrum of compound 3e	13
Figure S17: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3f	14
Figure S18: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3f	14
Figure S19: Mass Spectrum of compound 3f	15
Figure S20: ¹ H NMR (400 MHz, DMSO- d_6) Spectrum of compound 3g	16
Figure S21: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3g	16
Figure S22: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3h	17
Figure S23: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3h	17
Figure S24: ¹ H NMR (400 MHz, DMSO- d_6) Spectrum of compound 3i	18
Figure S25: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3i	18
Figure S26: Mass Spectrum of compound 3i	19
Figure S27: ¹ H NMR (400 MHz, DMSO- d_6) Spectrum of compound 3j	20
Figure S28: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3j	20
Figure S29: 'H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3k	21
Figure S30: ¹³ C NMR (100 MHz, DMSO- d_6) Spectrum of compound 3k	21
Figure S31: Mass Spectrum of compound 3k	22
Figure S32: 'H NMR (400 MHz, DMSO- d_6) Spectrum of compound 31	23
Figure S33: ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3	23

_

Figure S34: Mass Spectrum of compound 31	24
Figure S35: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3m	25
Figure S36: ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3m	25
Figure S37: Mass Spectrum of compound 3m	26
Figure S38: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3n	27
Figure S39: ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 3n	27
Figure S40: ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 30	28
Figure S41: ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) Spectrum of compound 30	28

S1: Preparation and Standardization of Onion Extract¹

Two gram of cut pieces of onion were taken into 100 mL clean beaker. To this 10 mL of Milli-Q water was added and stirred for half an hour. The stirred suspension was allowed to stand for 10 min. followed by filtration. The filtrate was used as a catalyst and stored in refrigerator. The strength of the onion extract is 0.0034 N, which is determined by using acid-base titrations and the pH of the catalyst is 3.6. The strength and pH of the catalyst were examined periodically over the month and found to be consistent.

The main constituent of onion is 1-propenylcysteine sulfoxide (isoalliin, an alkylated cysteine sulfoxide) (Figure 1), when cutting the onion, isoalliin undergoes a series of rapid reactions. The enzyme Alliinase, catalyzes the conversion of (E)-(prop-1-en-1-ylsulfinyl)alanine to (E)-1-propenesulfenic acid, which is then rearranged to the volatile and highly reactive lachrymatory factor (LF) (Z)- propanethial S-oxide,^{65,66} which on treatment with water to produce acetaldehyde, sulphuric acid and hydrogen sulfide.^{67,68}

Figure S1: Metabolic pathway of onion

References

- Prabakaran, K.; Sivakumar, M.; Perumal, M. S. A Simple, Efficient Green Protocol for the Synthesis of β-Enaminone and Enamino Ester Derivatives by Using Onion Extract as Green Catalyst. *ChemistrySelect.* 2017, 2, 2363-2372.
- [2] Thomson, S. J.; Rippon, P.; Butts, C.; Olsen, S.; Shaw, M.; Joyce, N. I.; Eady, C. C. Inhibition of platelet activation by lachrymatory factor synthase (LFS)-silenced (tearless) onion juice. *J. Agric. Food. Chem.* 2013, 61, 10574-10581.
- [3] Imai, S.; Tsuge, N.; Tomotake, M.; Nagatome, Y.; Sawada, H.; Nagata, T.; Kumagai, H. An onion enzyme that makes the eyes water. *Nature* **2002**, *419*, 685-985.
- [4] Paolo, A.; Angelo, A. Can onions be engineered for not tearing? *IUBMB Life*, 2003, 55, 49-50.
- [5] Eric B. The chemistry of garlic and onions. *Sci Am*, **1985**, 252, 114-118.

Figure S2:¹H NMR (400 MHz, DMSO-d₆) Spectrum of compound 3a

Figure S3: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3a

Figure S4: HSQC Spectrum of compound 3a

Figure S5: ¹H NMR (400 MHz, DMSO-*d*₆) Spectrum of compound 3b

Figure S6: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3b

Figure S7: Mass Spectrum of compound 3b

Figure S9: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3c

Figure S10: Mass Spectrum of compound 3c

Figure S12: ¹³C NMR (100 MHz, DMSO-d₆) Spectrum of compound 3d

Figure S13: Mass Spectrum of compound 3d

Figure S15: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3e

© 2023 ACG Publications. All rights reserved.

Figure S16: Mass Spectrum of compound 3e

Figure S18: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3f

Figure S19: Mass Spectrum of compound 3f

Figure S21: ¹³C NMR (100 MHz, DMSO-d₆) Spectrum of compound 3g

Figure S22: ¹H NMR (400 MHz, DMSO-*d*₆) Spectrum of compound 3h

Figure S23: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3h

© 2023 ACG Publications. All rights reserved.

Figure S25: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3i

Figure S26: Mass Spectrum of compound 3i

Figure S28: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3j

Figure S30: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3k

Figure S31: Mass Spectrum of compound 3k

Figure S33: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3I

Figure S34: Mass Spectrum of compound 31

Figure S35: ¹H NMR (400 MHz, DMSO-*d*₆) Spectrum of compound 3m

Figure S36: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3m

Figure S37: Mass Spectrum of compound 3m

Figure S39: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 3n

Figure S41: ¹³C NMR (100 MHz, DMSO-*d*₆) Spectrum of compound 30