Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

9,11-Cycloneren-3,7-diol: a New Cyclonerane Sesquiterpene from the Marine-Sediment-Derived Fungus *Trichoerma harzianum* WH-22

Xin Dong, Lin-Chuan Jia, Hai-Quan Chai, Xiao-Xiao Liu^{*} and Lei Yang^{*}

Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine), Qingdao 266033, China

Table of Contents	Page				
Figure S1: HR-ESI-MS spectrum of 1	2				
Figure S2: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1					
Figure S3: Enlarged ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1					
Figure S4: Enlarged ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1					
Figure S5: ¹³ C-NMR and DEPT (125 MHz, CDCl ₃) spectra of 1					
Figure S6: HSQC spectrum of 1	6				
Figure S7: Enlarged HSQC spectrum of 1					
Figure S8: Enlarged HSQC spectrum of 1					
Figure S9: HMBC spectrum of 1					
Figure S10: Enlarged HMBC spectrum of 1					
Figure S11: Enlarged HMBC spectrum of 1					
Figure S12: ¹ H- ¹ H COSY spectrum of 1					
Figure S13: Enlarged ¹ H- ¹ H COSY spectrum of 1					
Figure S14: Enlarged ¹ H- ¹ H COSY spectrum of 1	14				
Figure S15: NOESY spectrum of 1	15				
Figure S16: Enlarged NOESY spectrum of 1	16				
Figure S17: Scifinder search results of 1					
Table S1: NMR data of 1 and 11-cycloneren-3,7,10-triol	18				

Elemental Composition -							-		×			
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>P</u> rocess	<u>H</u> elp										
	12 6 1	M	X									
Single M	ass Analysis	5 (DDDE										^
Element pr	ediction: Off	/ DBE	min =	U.5, N	hax = 20.0							
Number of	isotope peaks	used fo	or i-FIT	= 3								
Monoisotop 135 formula	ic Mass, Even	Electron	lons sults w	ithin lin	nits (all results (un	to 1000)) for each ma	ee)				
Elements U	lsed:	with the	Suits W		into (an resulto (up	10 1000	// for each ma	33)				
Maria	Colo Mara	De	DDM	DDC	Commute.	:	: FIT Norm	Et Carl 9	6			No. C
239.2018	239.2011	0.7	2.9	2.5	C15 H27 O2	43.4	n/a	n/a	15	27	2	
239 2018												
100												
1												
%-												
0-4	39,000		220 1	00	220.0	200		30 300	· · · ·	22	400	m/z
For Help, pres	ss F1		200.1		2.39.2		2	55.500		23	0.400	

Figure S1: HR-ESI-MS spectrum of 1

Figure S2: ¹H-NMR (500 MHz, CDCl₃) spectrum of 1

Figure S4: Enlarged ¹H-NMR (500 MHz, CDCl₃) spectrum of 1

Figure S5: ¹³C-NMR and DEPT (125 MHz, CDCl₃) spectra of 1

Figure S6: HSQC spectrum of 1

Figure S7: Enlarged HSQC spectrum of 1

Figure S8: Enlarged HSQC spectrum of 1

Figure S9: HMBC spectrum of 1

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S10: Enlarged HMBC spectrum of 1

Figure S11: Enlarged HMBC spectrum of 1

Figure S12: ¹H-¹H COSY spectrum of 1

Figure S13: Enlarged ¹H-¹H COSY spectrum of 1

Figure S14: Enlarged ¹H-¹H COSY spectrum of 1

Figure S15: NOESY spectrum of 1

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S16: Enlarged NOESY spectrum of 1

Figure S17: Scifinder search results of 1

No	HO 14 HO 7 2 3 11 1 13 15 12 12	ЮН	HO $_{7}^{14}$ H $_{5}^{5}$ HO $_{11}^{11}$ $_{13}^{13}$ OH $_{15}^{12}$ $_{12}^{2}$ $_{13}^{2}$ OH $_{15}^{12}$ $_{12}^{$			
	$\frac{1}{\delta_{\rm H} (J \text{ in Hz})}$	δc , type	$\delta_{\rm H}$ (<i>J</i> in Hz)	$\delta_{\rm C}$, type		
1	1.06, d (<i>J</i> = 6.8)	14.6, CH ₃	1.02, d (<i>J</i> = 6.8)	15.4, CH ₃		
2	1.64, m	44.5, CH	1.64, m	45.5, CH		
3		81.5, C		82.1, C		
4a	1.69, m	40.5, CH ₂	1.63, m	41.4, CH ₂		
4b	1.59, m		1.53, m			
5a	1.87, m	24.5, CH ₂	1.81, m	25.2, CH ₂		
5b	1.61, m		1.59, m			
6	1.86, m	54.4, CH	1.81, m	55.7, CH		
7		74.9, C		75.4, C		
8a	2.32, dd (<i>J</i> = 13.9, 7.6)	44.1, CH ₂	1.52, m	37.9, CH ₂		
8b	2.27, dd (<i>J</i> = 13.9, 7.9)		1.40, ddd (<i>J</i> = 12.1, 11.2, 4.0)			
9a	5.69, dt (15.6, 7.6)	125.5, CH	1.62, m	30.2, CH ₂		
9b			1.56, m			
10	6.21, br d (15.6)	137.0, CH	3.97, t (<i>J</i> = 6.4)	77.4, CH		
11		142.0, C		148.8, C		
12a	4.92, br s	115.6, CH ₂	4.91, br s	111.6, CH ₂		
12b	4.91, br s		4.81, br s			
13	1.27, s	26.2, CH ₃	1.22, s	26.1, CH ₃		
14	1.16, s	25.6, CH ₃	1.12, s	24.8, CH ₃		
15	1.86, s	18.9, CH ₃	1.72, s	17.4, CH ₃		

 Table S1: NMR data of compound 1 and 11-cycloneren-3,7,10-triol