Supporting Information

Rec. Nat. Prod. X:X (2024) XX-XX

Two Cationic Indole Alkaloids from Ophiorrhiza japonica and

Their Xanthine Oxidase Inhibitory Activity

Yu He ¹, Fan Xu ¹, Chun Tian ¹, Hong-Lian Ai ¹, Bao-Bao Shi, ^{1,2,*} and Ji-Kai Liu ^{1,2,*}

¹School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, People's Republic of China

²International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University

Table of Contents	page	
Figure S1: HRESIMS spectrum of 1	2	
Figure S2: ¹ H NMR spectrum of 1	3	
Figure S3: Enlarged ¹ H NMR spectrum of 1	3	
Figure S4: ¹³ C NMR spectrum of 1	4	
Figure S5: Enlarged ¹³ C NMR spectrum of 1	4	
Figure S6: HSQC spectrum of 1	5	
Figure S7: HMBC spectrum of 1	6	
Figure S8: Enlarged HMBC spectrum of 1	6	
Figure S9: ¹ H- ¹ H COSY spectrum of 1	7	
Figure S10: ROESY spectrum of 1	8	
Figure S11: X-ray structure of compound 1	9	
Figure S12: The Scifinder similarity report for 1	10	
Figure S13: HRESIMS spectrum of 2	11	
Figure S14: ¹ H NMR spectrum of 2	12	
Figure S15: Enlarged ¹ H NMR spectrum of 2	12	
Figure S16: ¹³ C NMR spectrum of 2	13	
Figure S17: HSQC spectrum of 2	14	
Figure S18: HMBC spectrum of 2	15	
Figure S19: ¹ H- ¹ H COSY spectrum of 2	16	
Figure S20: ROESY spectrum of 2	17	
Figure S21: The Scifinder similarity report for 2	18	
Table S1: ¹ H and ¹³ C NMR data for compound 1 and 2	19	
Table S2: ¹ H and ¹³ C NMR data for compound 1 and Ophiorrhizine	20	

^{*}Corresponding author(s): shibb0505@163.com (B. B. Shi); liujikai@mail.scuec.edu.cn (J.K. Liu)

Figure S1: HRESIMS spectrum of 1

Figure S2: ¹H NMR spectrum of 1

Figure S3: Enlarged ¹H NMR spectrum of 1

Figure S5: Enlarged ¹³C NMR spectrum of 1

Figure S6: HSQC spectrum of 1

Figure S7: HMBC spectrum of 1

Figure S8: Enlarged HMBC spectrum of 1

© 2024 ACG Publications. All rights reserved.

Figure S9: ¹H-¹H COSY spectrum of 1

Figure S10: ROESY spectrum of 1

Crystal data for lzob20: C₁₉H₂₅N₂O•CHO₂•4(H₂O), M = 414.49, a = 8.1868(3) Å, b = 12.3654(4) Å, c = 20.9849(7) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2124.37(13) Å³, T = 150.(2) K, space group P212121, Z = 4, μ (Cu K α) = 0.809 mm⁻¹, 21387 reflections measured, 4015 independent reflections ($R_{int} = 0.0625$). The final R_I values were 0.0303 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0784 ($I > 2\sigma(I)$). The final R_I values were 0.0331 (all data). The final $wR(F^2)$ values were 0.0801 (all data). The goodness of fit on F^2 was 1.053. Flack parameter = 0.02(4).

Figure S11: X-ray structure of compound 1

Figure S12: The Scifinder similarity report for 1

Figure S13: HRESIMS spectrum of 2

Figure S14: ¹H NMR spectrum of 2

Figure S15: Enlarged ¹H NMR spectrum of 2

Figure S16: ¹³C NMR spectrum of 2

Figure S17: HSQC spectrum of 2

Figure S18: HMBC spectrum of 2

Figure S19: ¹H-¹H COSY spectrum of 2

Figure S20: ROESY spectrum of 2

Figure S21: The Scifinder similarity report for 2

Table S1: ${}^{1}H$ and ${}^{13}C$ NMR data for compound 1 and 2.

	1		2	
No.	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
2	_	133.3, C	_	130.2, C
3	4.33 t (9.5)	61.9, CH	4.88 m	61.9, CH
5	3.16 m	$60.9, CH_2$	3.45 m	61.3, CH ₂
	3.43 dd (11.8, 10.4)			
6	2.74 m	$17.9, CH_2$	2.90 d (17.4)	20.9, CH ₂
	2.90 m		3.11 m	
7	_	104.3, C	_	104.6, C
8	_	127.5, C	_	131.3, C
9	6.82 d (2.4)	103.5, CH	_	120.5, C
10	_	152.2, C	_	164.1, C
11	6.76 dd (8.7, 2.4)	113.6, CH	6.61 d (9.0)	122.0, CH
12	7.25 d (8.7)	113.4, CH	7.23 d (9.0)	120.3, CH
13	_	130.4, C	_	129.3, C
14	1.80 m	26.6, CH ₂	1.69 m	27.9, CH ₂
	2.59 m			
15	2.10 s	24.8, CH	2.24 m	25.2, CH
16	1.77 m	26.1, CH ₂	1.96 m	26.2, CH ₂
	1.83 m			
17	3.12 m	$49.0, CH_2$	3.25 m	49.1, CH ₂
	3.41 m		3.71 m	
18	1.01 t (7.3)	$12.0, CH_3$	1.04 t (7.4)	12.0, CH ₃
19	1.61 m	27.8, CH ₂	1.91 m	26.9, CH ₂
			2.70 m	
20	2.04 m	37.8, CH	2.14 m	38.1, CH
21	2.97 m	65.3, CH ₂	3.20 m	65.3, CH ₂
	3.69 t (11.5)		3.77 m	

Table S2: ¹H and ¹³C NMR data for compound 1 and ophiorrhizine.

	1		ophiorrhizine	
No.	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
2	_	133.3, C	_	127.7, C
3	4.33 t (9.5)	61.9, CH	4.90 t (9.0)	62.5, CH
5	3.16 m	60.9 , CH_2	3.54 ddd (12.5,12,5)	61.3, CH ₂
	3.43 dd (11.8, 10.4)		3.58 dd (12.5,6.5)	
6	2.74 m	17.9 , CH_2	2.96 d (18)	18.3, CH ₂
	2.90 m		3.11 ddd (18,12,6.5,2.5)	
7	_	104.3, C	_	105.4, C
8	_	127.5, C	_	120.7, C
9	6.82 d (2.4)	103.5, CH	7.28 d (8.4)	119.7, C
10	_	152.2, C	6.64 dd (8.4, 2.1)	111.1, C
11	6.76 dd (8.7, 2.4)	113.6, CH	_	155.2 CH
12	7.25 d (8.7)	113.4, CH	6.79 d (2.1)	98.0, CH
13	_	130.4, C	_	140.0, C
14	1.80 m	26.6, CH ₂	1.79 dd (13.5, 9.0)	26.9, CH ₂
	2.59 m		2.71ddd(13.5, 9,4)	
15	2.10 s	24.8, CH	2.24 m	25.1, CH
16	1.77 m	$26.1, CH_2$	1.9 -1.98 m	26.3, CH ₂
	1.83 m			
17	3.12 m	$49.0, CH_2$	3.28 m	49.1, CH ₂
	3.41 m		3.67 m	
18	1.01 t (7.3)	12.0, CH ₃	1.04 t (7.5)	12.0, CH ₃
19	1.61 m	27.8 , CH_2	1.70	28.0, CH ₂
20	2.04 m	37.8, CH	2.15 m	38.1, CH
21	2.97 m	65.3, CH ₂	3.25 m	65.2, CH ₂
	3.69 t (11.5)		3.83 dd (12.5,10.5)	