#### **Supporting Information**

### Rec. Nat. Prod. X:X (202X) XX-XX

# Lyratin D, A New 4-Hydroxyisoflavan from the Whole Plant of Solanum lyratum Thunb.

## Nguyen Minh Trang<sup>1,2</sup>, Le Ba Vinh<sup>1</sup>, Nguyen Viet Phong<sup>1,3\*</sup>

## and Seo Young Yang <sup>3</sup>\*

<sup>1</sup> Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10072, Vietnam

<sup>2</sup> College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea

<sup>3</sup> Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea

| Table of Contents                                                                                                     | Page |
|-----------------------------------------------------------------------------------------------------------------------|------|
| Figure S1: HR-ESI-MS spectrum of 1 (lyratin D)                                                                        | 2    |
| <b>Figure S2:</b> <sup>1</sup> H-NMR (500 MHz, DMSO- <i>d</i> <sub>6</sub> ) spectrum of <b>1</b> (lyratin D)         | 3    |
| Figure S3: $^{13}$ C-NMR (125 MHz, DMSO- $d_6$ ) spectrum of 1 (lyratin D)                                            | 4    |
| Figure S4: DEPT-135 (125 MHz, DMSO-d <sub>6</sub> ) spectrum of 1 (lyratin D)                                         | 5    |
| Figure S5: HMQC spectrum of 1 (lyratin D)                                                                             | 6    |
| Figure S6: HMBC spectrum of 1 (lyratin D)                                                                             | 7    |
| <b>Figure S7</b> : HMBC spectrum of <b>1</b> (lyratin D) (From $\delta_{\rm C}$ 90 ppm to $\delta_{\rm C}$ 170 ppm)   | 8    |
| <b>Figure S8:</b> <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>1</b> (lyratin D)                                | 9    |
| Figure S9: NOESY spectrum of 1 (lyratin D)                                                                            | 10   |
| <b>Figure S10:</b> NOESY spectrum of <b>1</b> (lyratin D) (From $\delta_{\rm H}$ 2.5 ppm to $\delta_{\rm H}$ 6.0 ppm) | 11   |
| Figure S11: Search report from SciFinder for 1 (lyratin D)                                                            | 12   |
| Figure S12: Cytotoxic effect of lyratin D (1) on RAW264.7 cells                                                       | 13   |
| <b>Figure S13:</b> DPPH radical scavenging activity of lyratin D (1) and the positive control (vitamin C)             | 13   |
| Table S1: NMR spectroscopic data (recorded in DMSO-d6) for lyratin D (1) and lyratin A                                | 14   |

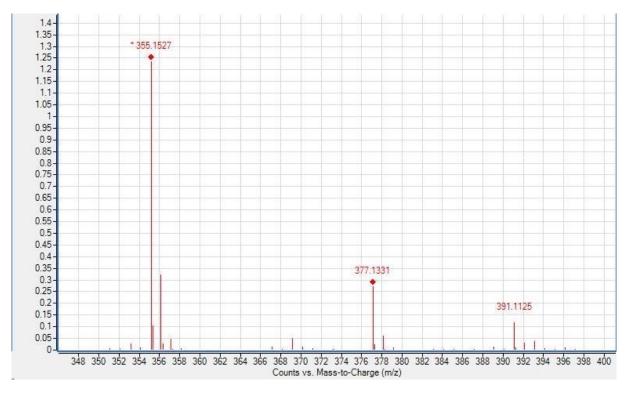



Figure S1: HR-ESI-MS spectrum of 1 (lyratin D)

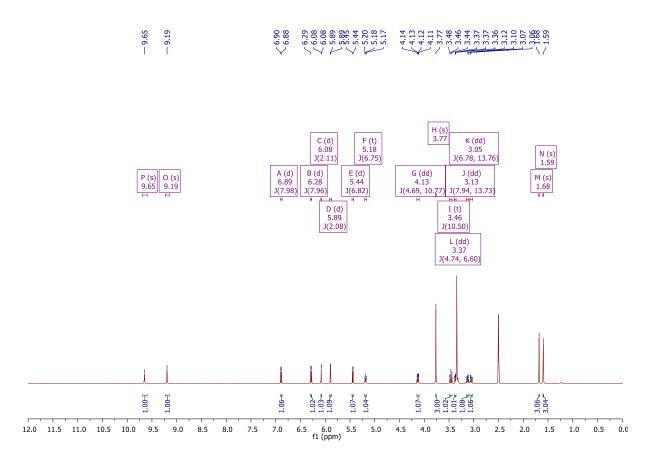



Figure S2: <sup>1</sup>H-NMR (500 MHz, DMSO-*d*<sub>6</sub>) spectrum of **1** (lyratin D)

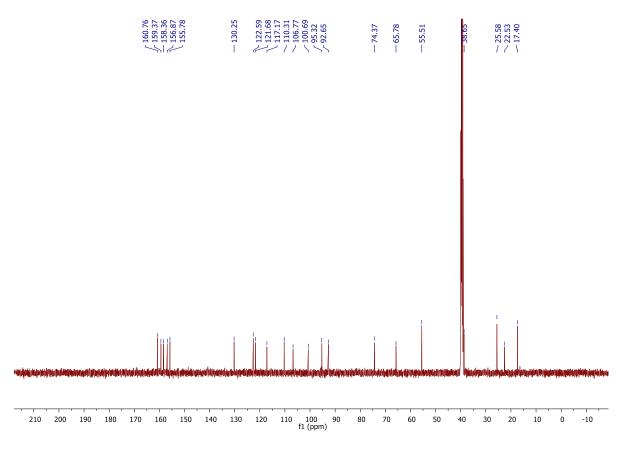



Figure S3: <sup>13</sup>C-NMR (125 MHz, DMSO-*d*<sub>6</sub>) spectrum of **1** (lyratin D)

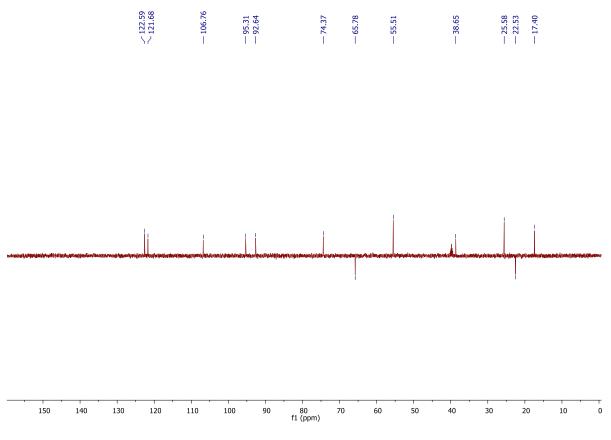



Figure S4: DEPT-135 (125 MHz, DMSO-*d*<sub>6</sub>) spectrum of 1 (lyratin D)

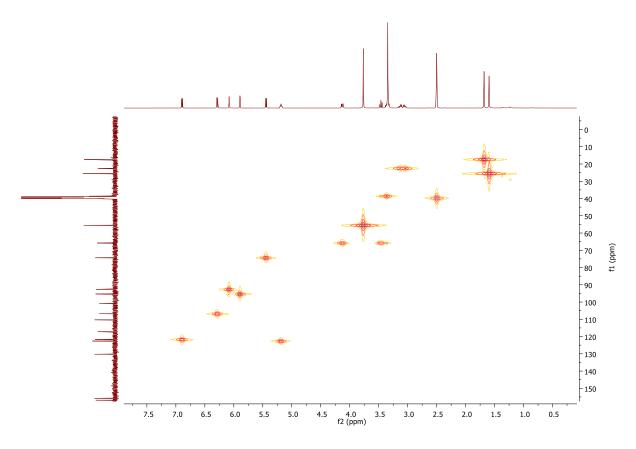



Figure S5: HMQC spectrum of 1 (lyratin D)

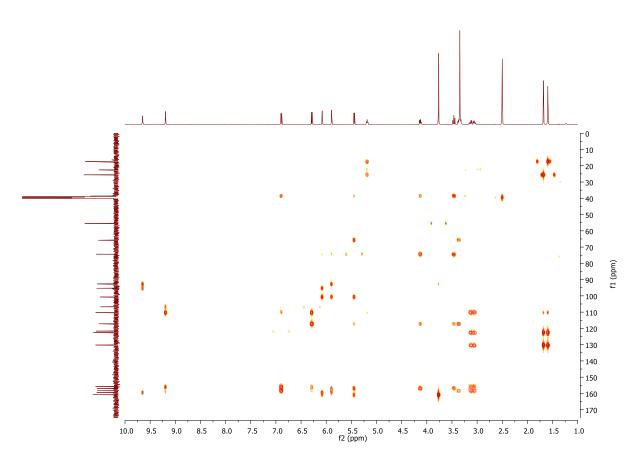



Figure S6: HMBC spectrum of 1 (lyratin D)

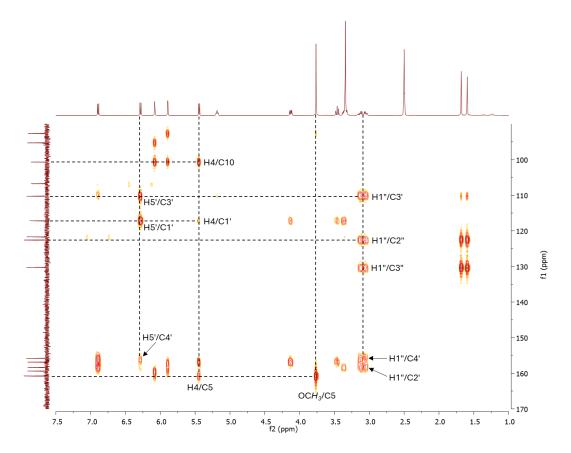



Figure S7: HMBC spectrum of 1 (lyratin D) (From  $\delta_{C}$  90 ppm to  $\delta_{C}$  170 ppm)

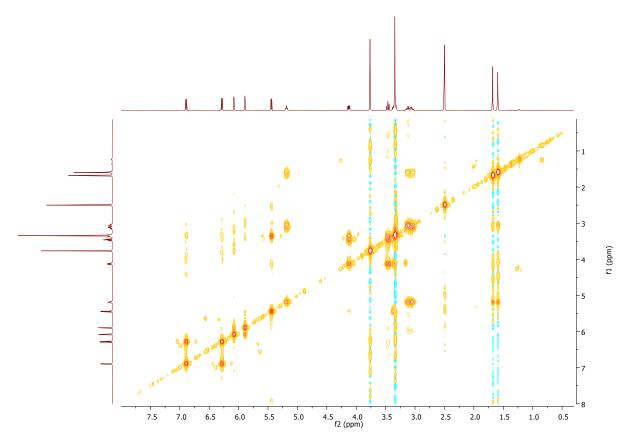



Figure S8: <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 1 (lyratin D)

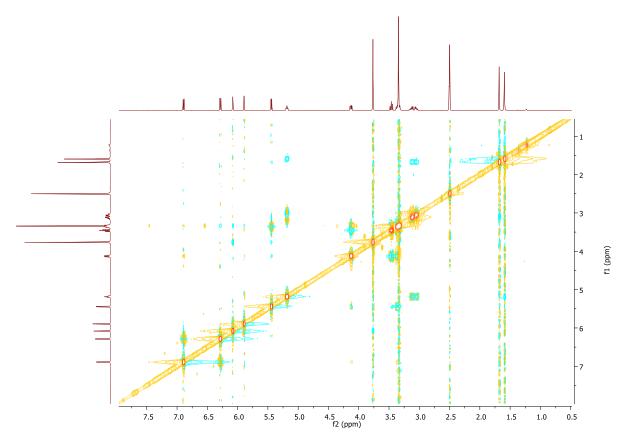
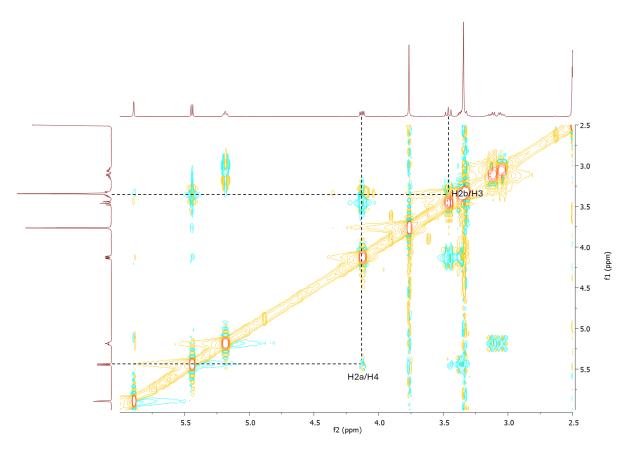



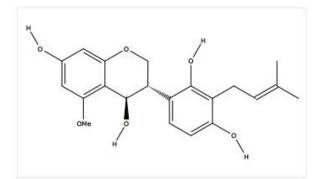

Figure S9: NOESY spectrum of 1 (lyratin D)



**Figure S10:** NOESY spectrum of **1** (lyratin D) (From  $\delta_{\rm H}$  2.5 ppm to  $\delta_{\rm H}$  6.0 ppm)

CAS SciFinder®

#### Page 1


# CAS 🌼 SciFinder

Task History

#### **Initiating Search**

July 11, 2024, 5:24 PM

#### Substances: Filtered By:



Structure Match: As Drawn

#### Search Tasks

| Task                                               | Search Type | View         |
|----------------------------------------------------|-------------|--------------|
| Exported: Returned Substance Results + Filters (0) | Substances  | View Results |

Copyright © 2024 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

CAS SciFinder® Page 2
CAS SciFinder

SciFinder

View in CAS SciFinder

View in CAS SciFinder

View in CAS SciFinder

View in CAS SciFinder

Copyright © 2024 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Figure S11: Search report from SciFinder for 1 (lyratin D) (accessed on July 11, 2024)

© 2024 ACG Publications. All rights reserved.

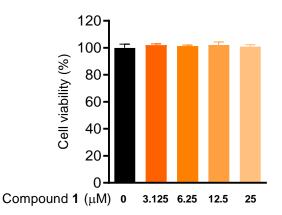



Figure S12: Cytotoxic effect of lyratin D (1) on RAW264.7 cells

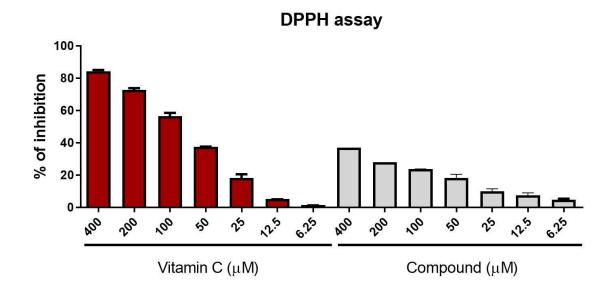
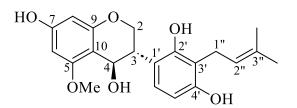
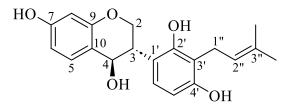





Figure S13: DPPH radical scavenging activity of lyratin D (1) and the positive control (vitamin C)

**Table S1:** NMR spectroscopic data (recorded in DMSO- $d_6$ ) for lyratin D (1) and lyratin A ( $\delta$  in ppm).



Lyratin D (1)



Lyratin A

| Position  | Lyratin D (1) Lyratin A              |                                               | Lyratin A [1]                        |                                               |
|-----------|--------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|
| FOSILIOII | $\delta_{\rm C}$ , type <sup>a</sup> | $\delta_{ m H}  (J  { m in}  { m Hz})^{ m b}$ | $\delta_{\rm C}$ , type <sup>c</sup> | $\delta_{ m H}  (J  { m in}  { m Hz})^{ m d}$ |
| 2         | 65.8, CH <sub>2</sub>                | 4.13, dd (10.5, 4.7)                          | 65.8, CH <sub>2</sub>                | 4.19, dd (11.0, 5.0)                          |
|           |                                      | 3.46, d (10.5)                                |                                      | 3.57, dd (11.1, 11.0)                         |
| 3         | 38.7, CH                             | 3.37, dd (6.8, 4.7)                           | 39.3, CH                             | 3.52, m                                       |
| 4         | 74.4, CH                             | 5.44, d (6.8)                                 | 77.4, CH                             | 5.45, d (6.6)                                 |
| 5         | 160.8, C                             | _                                             | 132.0, CH                            | 7.25, d (8.4)                                 |
| 6         | 92.6, CH                             | 6.08, d (2.1)                                 | 109.6, CH                            | 6.48, dd (8.4, 2.0)                           |
| 7         | 159.4, C                             | _                                             | 158.6, C                             | _                                             |
| 8         | 95.3, CH                             | 5.89, d (2.1)                                 | 102.3, CH                            | 6.25, d (2.0)                                 |
| 9         | 156.9, C                             | _                                             | 156.2, C                             | _                                             |
| 10        | 100.7, C                             | _                                             | 111.6, C                             | _                                             |
| 1′        | 117.2, C                             | _                                             | 117.2, C                             | _                                             |
| 2'        | 158.4, C                             | _                                             | 158.2, C                             | _                                             |
| 3'        | 110.3, C                             | _                                             | 110.4, C                             | _                                             |
| 4′        | 155.8, C                             | _                                             | 155.8, C                             | _                                             |
| 5'        | 106.8, CH                            | 6.28, d (8.0)                                 | 107.0, CH                            | 6.32, d (8.0)                                 |
| 6'        | 121.7, CH                            | 6.89, d (8.0)                                 | 121.7, CH                            | 6.92, d (8.0)                                 |
| 1″        | 22.5, CH <sub>2</sub>                | 3.13, dd (13.7, 8.0)                          | 22.4, $CH_2$                         | 3.12, d (6.9, 2H)                             |
|           |                                      | 3.05, dd (13.7, 6.8)                          |                                      |                                               |
| 2″        | 122.6, CH                            | 5.18, t (6.8)                                 | 122.6, CH                            | 5.15, t (6.9)                                 |
| 3″        | 130.3, C                             | _                                             | 130.0, C                             | _                                             |
| 4″        | 17.4, CH <sub>3</sub>                | 1.68, s                                       | 17.6, CH <sub>3</sub>                | 1.67, s                                       |
| 5″        | 25.6, CH <sub>3</sub>                | 1.59, s                                       | 25.4, CH <sub>3</sub>                | 1.59, s                                       |
| 5-OMe     | 55.5, CH <sub>3</sub>                | 3.77, s                                       |                                      |                                               |
| 7-OH      |                                      | 9.65, br s                                    |                                      | 9.59, br s                                    |
| 4'-OH     |                                      | 9.19, br s                                    |                                      | 9.21, br s                                    |

The assignments were based on DEPT, HMQC and HMBC experiments.

<sup>a</sup> 125 MHz.

<sup>b</sup> 500 MHz.

<sup>c</sup> 100 MHz.

<sup>d</sup> 400 MHz.

[1] D.-W. Zhang, G.-H. Li, Q.-Y. Yu and S.-J. Dai (2010). New anti-inflammatory 4-hydroxyisoflavans from *Solanum lyratum*, *Chem. Pharm. Bull.* **58**, 840-842.