Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX.

Anti-inflammatory Constituents Isolated From *Launaea* sarmentosa Against Infection by LPS-stimulated Macrophages

Thanh Q. C. Nguyen ^{1,2*}, Ta Thanh Hong^{1,2}, Vo Thanh Khang², Ho Thi Nhu Y², Duy Toan Pham³, Dang Huynh Giao⁴, Truong Thi Tu Tran⁵ and Kaeko Kamei⁶

¹Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam

²Bioassay Laboratory, CTU Hi-tech Building, Can Tho University, Can Tho, Vietnam

¹Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam

⁴College of Engineering, Can Tho University, Can Tho, Vietnam

⁵College of Food Science and Health, Kien Giang University, Kien Giang, Vietnam

⁶Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan

Table of contents	Page
Table S1. List of primers and primer sequences	3
Table S2. Cytotoxicity of LSm and its fractional extract on LPS-stimulated macrophages	3
Table S3. Induction efficiency of NO secretion from isolated compounds in LPS-induced	
inflammation	3
Table S4. The comparison of NMR data of compound 1 with a similar compound (Succinic	
acid).	4
Figure S1. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 1 (succinic acid)	4
Figure S2. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 1 (succinic acid)	5
Figure S3. HSQC spectrum of compound 1 (succinic acid)	6
Figure S4. DEPT-135 spectrum of compound 1 (succinic acid)	7
Figure S5. DEPT-90 spectrum of compound 1 (succinic acid)	7
Table S5. The comparison of NMR data of compound 2 with a similar compound	
(Quercetin).	8
Figure S6. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 2 (quercetin)	9
Figure S7. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 2 (quercetin) (from $\delta_{\rm H}$ 6	
ppm to $\delta_{\rm H}$ 8 ppm)	9
Figure S8. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 2 (quercetin)	10
Figure S9. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 2 (quercetin) (from $\delta_{\rm C}$ 95	
ppm to $\delta_{\rm C}$ 180 ppm)	11
Table S6. The comparison of NMR data of compound 3 with a similar compound	
(Quercetin-3-O-rutinoside).	11

^{© 202}X ACG Publications. All rights reserved.

Figure S10. ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3 (quercetin-3- <i>O</i> -rutinoside)	12
Figure S11. ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of compound 3 (quercetin-3- O -	15
rutinoside) (from $\delta_{\rm H}$ 6 ppm to $\delta_{\rm H}$ 13 ppm)	14
Figure S12. ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3 (quercetin-3- <i>O</i> -	
rutinoside) (from $\delta_{\rm H}$ 1.0 ppm to $\delta_{\rm H}$ 5.5 ppm)	14
Figure S13. ¹³ C-NMR (150 MHz, DMSO- d_6) spectrum of compound 3 (quercetin-3- O -	15
Figure S14 ¹³ C-NMR (150 MHz DMSO- d_c) spectrum of compound 3 (quercetin-3- Q_c	15
rutinoside) (from δ_C 20 ppm to δ_C 185 ppm)	15
Table S7. The comparison of NMR data of compound 4 with a similar compound (Luteolin-	
7- O - β -glucopyranoside).	16
Figure S14. ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7- O - β -D-	
glucopyranoside)	17
Figure S15. ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7- O - β -D-	18
glucopyranoside) (from $\partial_H 4$ ppm to $\partial_H / .5$ ppm) Figure S16 [H NMP (600 MHz DMSO d) spectrum of compound 4 (lutcolin 7.0. β D	10
righte S10. II-NMK (600 MHZ, DMSO- a_6) spectrum of compound 4 (inteorm-7-0-p-D- glucopyranoside) (from $\delta_{\rm H}$ 3 ppm to $\delta_{\rm H}$ 4 ppm)	18
Figure S17. ¹³ C-NMR (150 MHz, DMSO- d_{δ}) spectrum of compound 4 (luteolin-7- <i>O</i> - <i>B</i> -D-	
glucopyranoside)	19
Figure S18. ¹³ C-NMR (150 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7- O - β -D-	
glucopyranoside) (from $\delta_{\rm C}$ 60 ppm to $\delta_{\rm C}$ 185 ppm)	20
Figure S19. HSQC spectrum of compound 4 (luteolin-7- O - β -D-glucopyranoside)	21
Figure S20. HSQC spectrum of compound 4 (luteolin-7- <i>O</i> - β -D-glucopyranoside) (from $\delta_{\rm C}$	22
57 ppm to $\partial_{\rm C}$ 8 ppm)	22
Figure S21. HSQC spectrum of compound 4 (luteolin-/- <i>O</i> - <i>B</i> -D-glucopyranoside) (from $\partial_{\rm C}$	23
Figure \$22 HMBC spectrum of compound 4 (luteolin-7-0-&D-gluconvranoside)	23 24
Figure S23 HMBC spectrum of compound 4 (luteolin-7-0- β -D-glucopyranoside) (from δ_c	27
140 ppm to $\delta_{\rm C}$ 185 ppm)	25
Figure S24. HMBC spectrum of compound 4 (luteolin-7- <i>O</i> - β -D-glucopyranoside) (from $\delta_{\rm C}$	
55 ppm to $\delta_{\rm C}$ 105 ppm)	26
Table S8. The comparison of NMR data of compound 5 with a similar compound (2-(4-	
hydroxyphenyl)acetic acid)	27
Figure S26. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 5 (2-(4-	27
Figure \$27 ⁻¹ H NMR (600 MHz, CD ₂ OD) spectrum of compound 5 (2 (4	27
hydroxyphenyl)acetic acid) (from $\delta_{\rm H}$ 3 ppm to $\delta_{\rm H}$ 7 5 ppm)	28
Figure S28. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 5 (2-(4-	_0
hydroxyphenyl)acetic acid)	29
Figure S29. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 5 (2-(4-	
hydroxyphenyl)acetic acid) (from $\delta_{\rm C}$ 40 ppm to $\delta_{\rm C}$ 180 ppm)	29

No.	Gene name	Primer probes	Sequence
1	iNOS	Forward	5'- CTTTGCCACGGACGAGAC-3'
		Reverse	5'- TCATTGTACTCTGAGGGCTGAC-3'
2	IL-6	Forward	5'- GCTACCAAACTGGATATAATCAGGA-3'
		Reverse	5'- CCAGGTAGCTATGGTACTCCAGAA-3'
3	TNF-α	Forward	5'- CTGTAGCCCACGTCGTAGC-3'
		Reverse	5'- TTGAGATCCATGCCGTTG-3'
4	β -actin	Forward	5'- GGAGGGGGTTGAGGTGTT-3'
		Reverse	5'- GTGTGCACTTTTATTGGTCTCAA-3'

Table S1: List of primers and primer sequences

iNOS; inducible nitric oxide synthase, COX-2; cyclooxygenase-2, HO-1; heme oxygenase-1

Cytotoxicity (cell viability < 95 %); non-treatead with LPS							
Parameter	Control	non-LPS	50	100	200	400	800
LSm	_	n.a	_	_	_	54.00 ± 7.32	15.06 ± 0.87
Hex-ex	—	n.a	_	_	_	89.18 ± 1.57	23.40 ± 0.21
Ea-ex	—	n.a	_	_	_	76.54 ± 5.46	31.06 ± 1.25
Aq-ex	_	n.a	_	_	_	56.29 ± 3.43	25.86 ± 3.27
	Cy	totoxicity (cell v	iability <	< 95 %);	treatead	l with LPS	
	Control	LPS	50	100	200	400	800
LSm	—	94.52 ± 0.58	_	_	_	79.32 ± 1.1	19.99 ± 1.90
Hex-ex	_	93.21 ± 0.19	_	_	_	27.00 ± 0.20	2.46 ± 0.09
Ea-ex	_	94.05 ± 0.82	_	_	_	90.67 ± 3.27	31.77 ± 0.36
Aq-ex	_	91.47 ± 0.65	-	_	_	85.67 ± 1.80	62.94 ± 2.39

Table S2: Cytotoxicity of LSm and its fractional extract on LPS-stimulated macrophages

"-": No cytotoxicity; " n.a": Not applicable; p < 0.05.

Table S3: Induction efficiency of NO secretion from isolated compounds in LPS-induced inflammation

No	Compound	IC50 value of NO inhibition (µM)
1	Succinic acid	>100
2	Quercetin	27.44 ± 0.30
3	2(4-Hydroxylphenyl)acetic acid	>100
4	Luteolin-7- <i>O</i> -β-glucopyranoside	30.38 ± 0.86
5	Quercetin-3-O-rutinoside	>100

1. Supplementary spectroscopic data of compound 1

	Compound 1 (CD ₃ OD)		Succinic acid (CD ₃ OD) [1]	
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm
1, 4	176.1	-	174.8	-
2, 3	29.7	2.59	28.4	2.57

Table S4: The comparison of NMR data of compound 1 with a similar compound (Succinic acid).

Figure S2: ¹³C-NMR (150 MHz, CD₃OD) spectrum of compound 1 (succinic acid)

Figure S3: HSQC spectrum of compound 1 (succinic acid)

Figure S5: DEPT-90 spectrum of compound 1 (succinic acid)

2. Supplementary spectroscopic data of compound 2.

	Compound 2 (CD ₃ OD)		Quercetin (CD ₃ OD) [2]	
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm
2	-	148.8	-	148.6
3	-	137.2	-	137.2
4	-	177.3	-	177.3
5	-	162.5	-	162.6
6	6.20 (1H, <i>d</i> , <i>J</i> = 1.8 Hz)	99.3	6.20 (1H, <i>d</i> , <i>J</i> = 2.0 Hz)	99.1
7	-	165.6	-	165.6
8	6.41 (1H, <i>d</i> , <i>J</i> = 1.8 Hz)	94.4	6.41 (1H, <i>d</i> , <i>J</i> = 2.0 Hz)	94.4
9	-	158.3	-	158.2
10	-	104.5	-	104.5
1'	-	124.2	-	124.1
2'	7.75 (1H, <i>d</i> , <i>J</i> = 2.4 Hz)	116.0	7.75 (1H, <i>d</i> , <i>J</i> = 2.2 Hz)	116.0
3'	-	146.2	-	146.2
4'	-	148.0	-	148.0
5'	6.91 (1H, <i>d</i> , <i>J</i> = 9 Hz)	116.2	6.99 (1H, <i>d</i> , <i>J</i> = 8.5 Hz)	116.2
6'	7.66 (1H, <i>dd</i> , <i>J</i> = 9.0, 2.4 Hz)	121,7	7.65 (1H, <i>dd</i> , <i>J</i> = 8.5; 2 Hz)	121,7

 Table S5: The comparison of NMR data of compound 2 with a similar compound (Quercetin).

Figure S7: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound **2** (quercetin) (from $\delta_{\rm H}$ 6 ppm to $\delta_{\rm H}$ 8 ppm)

4. Supplementary spectroscopic data of compound 3.

Table S6: The comparison of NMR data of compound **3** with a similar compound (Quercetin-3-*O*-rutinoside).

	Compound 3 (DMSO- <i>d</i> ₆)		Quercetin-3-O-rutinoside (DMSO-d ₆)[5]		
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm	
2	-	156.5	-	156.5	
3	-	133.3	-	133.3	
4	-	177.3	-	177.3	
5	-	161.2	-	161.2	
6	6.19 (1H, <i>d</i> , <i>J</i> =1.8 Hz)	98.6	6.19 (1H, <i>d</i> , <i>J</i> = 2.0 Hz)	98.7	
7	-	164.0	-	164.2	

8	6.38 (1H, <i>d</i> , <i>J</i> =1.8 Hz)	93.5	6.38 (1H, d, J = 2.0 Hz)	93.6
9	-	156.4	-	156.4
10	-	103.9	-	103.9
1'	-	121.1	-	121.1
2'	7.55 (1H, <i>m</i> , <i>J</i> = 8.4; 2.4 Hz)	115.2	7.53 (1H, <i>m</i> , <i>J</i> = 8.5; 2.0 Hz)	115.2
3'	-	144.7	-	144.7
4'	-	148.4	-	148.4
5'	6.84 (1H, <i>d</i> , <i>J</i> = 8.4 Hz)	116.2	6.84 (1H, <i>d</i> , <i>J</i> = 8.2 Hz)	116.2
6'	7.55 (1H, <i>m</i> , <i>J</i> = 8.4; 2.4 Hz)	121.5	7.53 (1H, <i>m</i> , <i>J</i> = 8.5; 2.0 Hz)	121.7
1"	5.35 (1H, <i>d</i> , <i>J</i> = 7.2 Hz)	101.1	5.34 (1H, <i>d</i> , <i>J</i> = 7.3 Hz)	101.2
2"	3.21 – 3.39 (1H, <i>m</i>)	74.0	3.15 – 3.41 (<i>m</i>)	74.1
3"	3.21 – 3.39 (1H, <i>m</i>)	76.4	3.15 – 3.41 (<i>m</i>)	76.4
4"	3.21 – 3.39 (1H, <i>m</i>)	70.0	3.15 – 3.41 (<i>m</i>)	70.0
5"	3.21 – 3.39 (1H, <i>m</i>)	75.9	3.15 – 3.41 (<i>m</i>)	75.9
6"	3.21 - 3.39 (1H, m) 3.72 (1H, d, J) = 10.2 Hz)	66.9	3.15 – 3.41 (<i>m</i>)	66.8
1'''	4.39 (1H, <i>brd</i> , <i>J</i> = 0.6 Hz)	100.7	4.38 (1H, s)	100.7
2'''	3.04 – 3.09 (1 H, <i>m</i>)	70.3	3.05 - 3.10 (<i>m</i>)	70.4
3'''	3.04 – 3.09 (1 H, <i>m</i>)	70.5	3.05 - 3.10 (<i>m</i>)	70.5
4'''	3.04 – 3.09 (1 H, <i>m</i>)	71.8	3.05 - 3.10 (<i>m</i>)	71.8
5"'	3.04 – 3.09 (1 H, <i>m</i>)	68.2	3.05 - 3.10 (<i>m</i>)	68.2

Figure S10: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of compound **3** (quercetin-3-*O*-rutinoside)

Figure S11: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of compound **3** (quercetin-3-*O*-rutinoside)

Figure S12: ¹H-NMR (600 MHz, DMSO- d_{δ}) spectrum of compound 3 (quercetin-3-O-rutinoside) (from $\delta_{\rm H}$ 1.0 ppm to $\delta_{\rm H}$ 5.5 ppm)

Figure S14: ¹³C-NMR (150 MHz, DMSO- d_6) spectrum of compound 3 (quercetin-3-O-rutinoside) (from δ_C 20 ppm to δ_C 185 ppm)

4. Supplementary spectroscopic data of compound 4.

Table S7: The comparison of NMR data of compound 4 with a similar compound (Luteolin-7-O- β -glucopyranoside).

	Compound	d 4 (DMSO- <i>d</i> ₆)	MSO- d_6) Luteolin-7- O - β -D-glucopyran (DMSO- d_6) [4]	
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm
2	-	164.5	-	164.9
3	6.75 (1H, <i>s</i>)	103.2	6.76 (1H, s)	103.5
4	-	181.9	-	182.3
5	-	161.1	-	161.6
6	6.45 (1H, <i>d</i> , <i>J</i> = 2.4 Hz)	99.5	6.45 (1H, <i>d</i> , <i>J</i> = 1.7 Hz)	99.9
7	-	162.9	-	163.4
8	6.79 (1H, <i>d</i> , <i>J</i> = 1.8 Hz)	94.7	6.79 (1H, <i>d</i> , <i>J</i> = 1.7 Hz)	95.1
9	-	156.9	-	157.4
10	-	105.3	-	105.8
1′	-	121.4	-	121.6
2'	7.43 (1H, <i>d</i> , <i>J</i> = 2.4 Hz)	113.6	7.43 (1H, <i>d</i> , <i>J</i> = 8.4 Hz)	113.9
3'	-	145.8	-	146.4
4′	-	149.9	-	150.7
5'	6.92 (1H, <i>d</i> , <i>J</i> = 8.4 Hz)	116.0	6.90 (1H, <i>d</i> , <i>J</i> = 8.4 Hz)	116.4
6'	7.46 (1H, <i>dd</i> , <i>J</i> = 8.4; 2.4 Hz)	119.1	7.45 (1H, <i>dd</i> , <i>J</i> = 8.3; 2.3 Hz)	119.6
1″	5.09 (1H, <i>d</i> , <i>J</i> = 7.2 Hz)	99.9	5.08 (1H, <i>d</i> , <i>J</i> = 7.3 Hz)	100.3
2″	3.28 (1H, <i>m</i>)	73.1	3.26 (1H, <i>m</i>)	73.6
3″	3.45 (1H, <i>m</i>)	77.1	3.45 (1H, <i>m</i>)	77.6

-H-INMR (600 MHz, DMSO- a_6) spectrum of compound 4 (futeon

glucopyranoside)

Figure S17: ¹H-NMR (600 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7-O- β -D-glucopyranoside) (from δ_H 3 ppm to δ_H 4 ppm)

glucopyranoside) (from $\delta_{\rm C}$ 60 ppm to $\delta_{\rm C}$ 185 ppm)

Figure S20: HSQC spectrum of compound **4** (luteolin-7-*O*-β-D-glucopyranoside)

Figure S21: HSQC spectrum of compound 4 (luteolin-7-*O*- β -D-glucopyranoside) (from $\delta_{\rm C}$ 57 ppm to $\delta_{\rm C}$ 8 ppm)

Figure S22: HSQC spectrum of compound 4 (luteolin-7-*O*- β -D-glucopyranoside) (from $\delta_{\rm C}$ 90 ppm to $\delta_{\rm C}$ 120 ppm)

Figure S23: HMBC spectrum of compound **4** (luteolin-7-*O*-β-D-glucopyranoside)

Figure S24: HMBC spectrum of compound **4** (luteolin-7-*O*- β -D-glucopyranoside) (from $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 185 ppm)

Figure S25: HMBC spectrum of compound 4 (luteolin-7-*O*- β -D-glucopyranoside) (from $\delta_{\rm C}$ 55 ppm to $\delta_{\rm C}$ 105 ppm)

5. Supplementary spectroscopic data of compound 5.

Table S8: The comparison of NMR data of compound 5 with a similar compound (2-(4-

	Compound 3 (CD ₃ OD)		2-(4-Hydroxyphenyl)acetic acid (CD ₃ OD) [3]	
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm
1	-	126.8	-	127.1
2,6	7.09 (2H, <i>d</i> , <i>J</i> = 8.4 Hz)	131.3	7.08 (2H, <i>d</i> , <i>J</i> = 8.3 Hz)	131.5
3, 5	6.74 (2H, <i>d</i> , <i>J</i> = 8.4 Hz)	116.2	6.72 (2H, <i>d</i> , <i>J</i> = 8.5 Hz)	116.3
4	-	157.4	-	157.6
7	3.50 (2H, s)	41.1	3.5 (2H, <i>s</i>)	41.7
8	-	176.3	-	176.2

hydroxyphenyl)acetic acid)

Figure S26: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound 5 (2-(4-Hydroxyphenyl)acetic acid)

Figure S27: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound 5 (2-(4-Hydroxyphenyl)acetic acid) (from $\delta_{\rm H}$ 3 ppm to $\delta_{\rm H}$ 7.5 ppm)

(from $\delta_{\rm C}$ 40 ppm to $\delta_{\rm C}$ 180 ppm)