Supporting Information

Rec. Nat. Prod. 18:6 (2024) 663-673

Anti-inflammatory Constituents Isolated From *Launaea sarmentosa*Against Infection by LPS-stimulated Macrophages

Thanh Q. C. Nguyen ^{1,2*}, Ta Thanh Hong^{1,2}, Vo Thanh Khang², Ho Thi Nhu Y², Duy Toan Pham³, Dang Huynh Giao⁴, Truong Thi Tu Tran⁵

and Kaeko Kamei⁶

¹Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam

²Bioassay Laboratory, CTU Hi-tech Building, Can Tho University, Can Tho, Vietnam

¹Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam

⁴College of Engineering, Can Tho University, Can Tho, Vietnam

⁵College of Food Science and Health, Kien Giang University, Kien Giang, Vietnam

⁶Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, Japan

Table of contents	Page
Table S1. List of primers and primer sequences	3
Table S2. Cytotoxicity of LSm and its fractional extract on LPS-stimulated macrophages	3
Table S3. Induction efficiency of NO secretion from isolated compounds in LPS-induced	
inflammation	3
Table S4. The comparison of NMR data of compound 1 with a similar compound (Succinic	
acid).	4
Figure S1. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 1 (succinic acid)	4
Figure S2. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 1 (succinic acid)	5
Figure S3. HSQC spectrum of compound 1 (succinic acid)	6
Figure S4. DEPT-135 spectrum of compound 1 (succinic acid)	7
Figure S5. DEPT-90 spectrum of compound 1 (succinic acid)	7
Table S5. The comparison of NMR data of compound 2 with a similar compound (Quercetin).	
Figure S6. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 2 (quercetin)	8
Figure S7. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 2 (quercetin) (from $\delta_{\rm H}$ 6 ppm to	9
δ_{H} 8 ppm)	
Figure S8. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 2 (quercetin)	9
Figure S9. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 2 (quercetin) (from δ_C 95 ppm	10
to $\delta_{\rm C}$ 180 ppm)	
Table S6. The comparison of NMR data of compound 3 with a similar compound (Quercetin-3-	11
O-rutinoside).	
Figure S10. ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3 (quercetin-3- <i>O</i> -rutinoside)	11
Figure S11. ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3 (quercetin-3- <i>O</i> -rutinoside)	
(from $\delta_{\rm H}$ 6 ppm to $\delta_{\rm H}$ 13 ppm)	
	13

Figure S12. ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3 (quercetin-3- <i>O</i> -rutinoside)	
(from $\delta_{\rm H}$ 1.0 ppm to $\delta_{\rm H}$ 5.5 ppm)	14
Figure S13. ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3 (quercetin-3- <i>O</i> -	1.4
rutinoside)	14
Figure S14. ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3 (quercetin-3- <i>O</i> -	1.5
rutinoside) (from $\delta_{\rm C}$ 20 ppm to $\delta_{\rm C}$ 185 ppm)	15
Table S7. The comparison of NMR data of compound 4 with a similar compound (Luteolin-7- <i>O</i> -	1.5
β-glucopyranoside).	15
Figure S15. ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 4 (luteolin-7- <i>O</i> -β-D-	16
glucopyranoside)	10
Figure S16. ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of compound 4 (luteolin-7- <i>O</i> -β-D-	17
glucopyranoside) (from δH 4 ppm to δH 7.5 ppm)	1 /
Figure S17. ¹ H-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 4 (luteolin-7- <i>O</i> -β-D-	18
glucopyranoside) (from δH 3 ppm to δH 4 ppm)	10
Figure S18 . ¹³ C-NMR (150 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7-O- β -D-	18
glucopyranoside)	10
Figure S19. 13 C-NMR (150 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7- O - $β$ -D-	19
glucopyranoside) (from $\delta_{\rm C}$ 60 ppm to $\delta_{\rm C}$ 185 ppm)	19
Figure S20. HSQC spectrum of compound 4 (luteolin-7- <i>O</i> -β-D-glucopyranoside)	
Figure S21. HSQC spectrum of compound 4 (luteolin-7- <i>O</i> - β -D-glucopyranoside) (from δ _C 57	20
ppm to $\delta_{\rm C}$ 8 ppm)	21
Figure S22. HSQC spectrum of compound 4 (luteolin-7- O - β -D-glucopyranoside) (from δ_C 90	
ppm to $\delta_{\rm C}$ 120 ppm)	22
Figure S23. HMBC spectrum of compound 4 (luteolin-7- <i>O</i> -β-D-glucopyranoside)	
Figure S24. HMBC spectrum of compound 4 (luteolin-7- O - $β$ -D-glucopyranoside) (from $δ$ _C 140	23
ppm to $\delta_{\rm C}$ 185 ppm)	24
Figure S25. HMBC spectrum of compound 4 (luteolin-7- O - β -D-glucopyranoside) (from δ_C 55	
ppm to $\delta_{\rm C}$ 105 ppm)	25
Table S8. The comparison of NMR data of compound 5 with a similar compound (2-(4-	
hydroxyphenyl)acetic acid)	26
Figure S26. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 5 (2-(4-hydroxyphenyl)acetic	
acid)	27
Figure S27. ¹ H-NMR (600 MHz, CD ₃ OD) spectrum of compound 5 (2-(4-hydroxyphenyl)acetic	
acid) (from $\delta_{\rm H}$ 3 ppm to $\delta_{\rm H}$ 7.5 ppm)	27
Figure S28. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 5 (2-(4-hydroxyphenyl)acetic	
acid)	28
Figure S29. ¹³ C-NMR (150 MHz, CD ₃ OD) spectrum of compound 5 (2-(4-hydroxyphenyl)acetic	•
acid) (from $\delta_{\rm C}$ 40 ppm to $\delta_{\rm C}$ 180 ppm)	29
	20
	29

Table S1: List of primers and primer sequences

No.	Gene name	Primer probes	Sequence
1	iNOS	Forward	5'- CTTTGCCACGGACGAGAC-3'
		Reverse	5'- TCATTGTACTCTGAGGGCTGAC-3'
2	IL-6	Forward	5'- GCTACCAAACTGGATATAATCAGGA-3'
		Reverse	5'- CCAGGTAGCTATGGTACTCCAGAA-3'
3	TNF-α	Forward	5'- CTGTAGCCCACGTCGTAGC-3'
		Reverse	5'- TTGAGATCCATGCCGTTG-3'
4	β -actin	Forward	5'- GGAGGGGTTGAGGTGTT-3'
		Reverse	5'- GTGTGCACTTTTATTGGTCTCAA-3'

iNOS; inducible nitric oxide synthase, COX-2; cyclooxygenase-2, HO-1; heme oxygenase-1

Table S2: Cytotoxicity of LSm and its fractional extract on LPS-stimulated macrophages

Cytotoxicity (cell viability < 95 %): non-treatead with LPS						
Control	non-LPS	50	100	200	400	800
_	n.a	_	_	_	54.00 ± 7.32	15.06 ± 0.87
_	n.a	_	_	_	89.18 ± 1.57	23.40 ± 0.21
_	n.a	_	_	_	76.54 ± 5.46	31.06 ± 1.25
_	n.a	_	_	_	56.29 ± 3.43	25.86 ± 3.27
Cy	totoxicity (cell vi	iability <	< 95 %);	treatead	l with LPS	
Control	LPS	50	100	200	400	800
_	94.52 ± 0.58	_	_	_	79.32 ± 1.1	19.99 ± 1.90
_	93.21 ± 0.19	_	_	_	27.00 ± 0.20	2.46 ± 0.09
_	94.05 ± 0.82	_	_	_	90.67 ± 3.27	31.77 ± 0.36
_	91.47 ± 0.65	_	_	_	85.67 ± 1.80	62.94 ± 2.39
	Control Cy	Control non-LPS - n.a - n.a - n.a - n.a Cytotoxicity (cell violation) Control LPS - 94.52 ± 0.58 - 93.21 ± 0.19 - 94.05 ± 0.82	Control non-LPS 50 - n.a - - n.a - - n.a - - n.a - Cytotoxicity (cell viability 50 Control LPS 50 - 94.52 ± 0.58 - - 93.21 ± 0.19 - - 94.05 ± 0.82 -	Control non-LPS 50 100 - n.a - - - n.a - - - n.a - - - n.a - - - $\frac{100}{100}$ - $\frac{100}{100}$ Control LPS 50 $\frac{100}{100}$ - $\frac{94.52 \pm 0.58}{100}$ - - - $\frac{93.21 \pm 0.19}{100}$ - - - $\frac{94.05 \pm 0.82}{100}$ - -	Control non-LPS 50 100 200 - n.a - - - - - - - - Control LPS 50 100 200 - 94.52 \pm 0.58 - - - - 93.21 \pm 0.19 - - - - 94.05 \pm 0.82 - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

[&]quot;- ": No cytotoxicity; " n.a": Not applicable; p < 0.05.

Table S3: Induction efficiency of NO secretion from isolated compounds in LPS-induced inflammation

No	Compound	IC_{50} value of NO inhibition (μM)
1	Succinic acid	>100
2	Quercetin	27.44 ± 0.30
3	2(4-Hydroxylphenyl)acetic acid	>100
4	Luteolin-7- <i>O-β</i> -glucopyranoside	30.38 ± 0.86
5	Quercetin-3-O-rutinoside	>100

1. Supplementary spectroscopic data of compound 1

Table S4: The comparison of NMR data of compound 1 with a similar compound (Succinic acid).

_	Compound 1 (CD ₃ OD)		Succinic acid (CD ₃ OD) [1]	
Position	13 C-NMR (150 MHz) $\delta_{\rm C}$ ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm
1, 4	176.1	-	174.8	-
2, 3	29.7	2.59	28.4	2.57

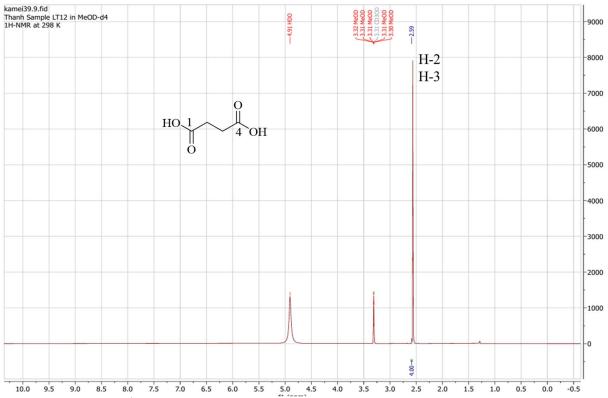


Figure S1: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound 1 (succinic acid)

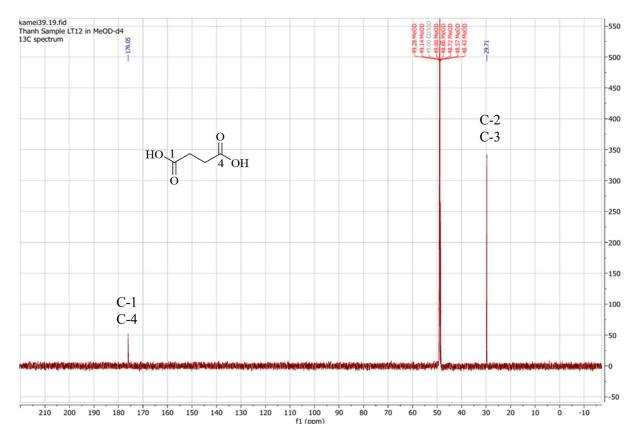


Figure S2: ¹³C-NMR (150 MHz, CD₃OD) spectrum of compound 1 (succinic acid)

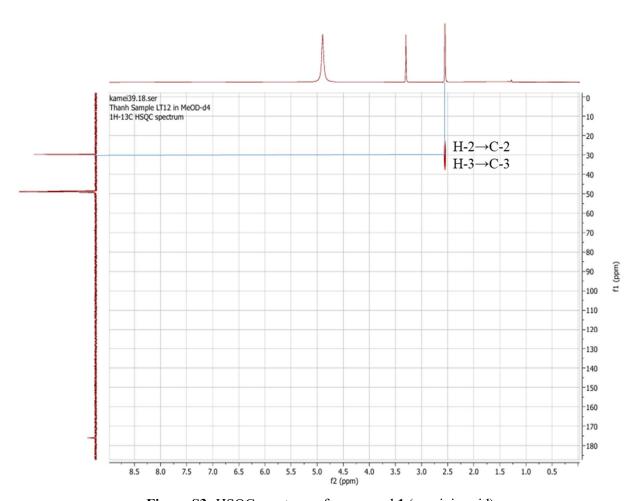


Figure S3: HSQC spectrum of compound 1 (succinic acid)

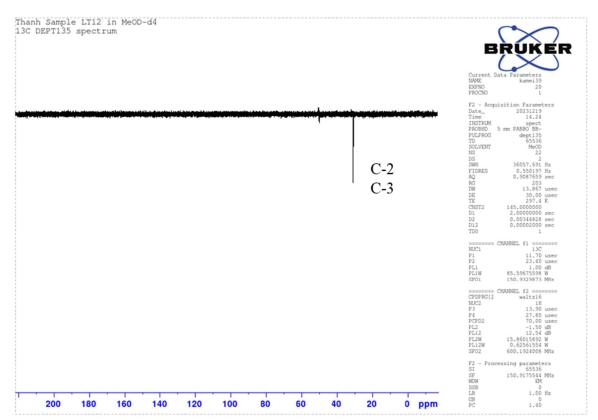


Figure S4: DEPT-135 spectrum of compound 1 (succinic acid)

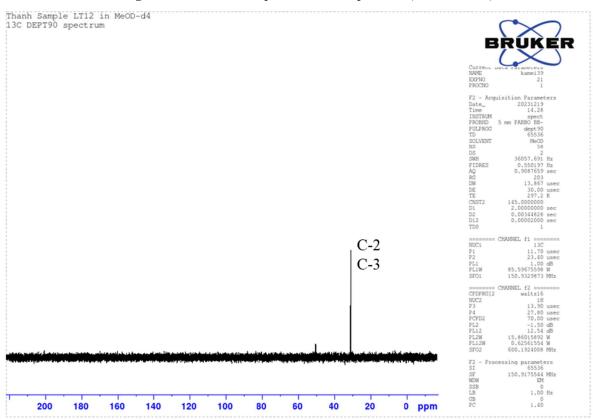


Figure S5: DEPT-90 spectrum of compound 1 (succinic acid)

2. Supplementary spectroscopic data of compound 2.

Table S5: The comparison of NMR data of compound 2 with a similar compound (Quercetin).

	Compound 2 (CD ₃ OD)		Quercetin (CD ₃ OD) [2]	
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) б _н ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm
2	-	148.8	-	148.6
3	-	137.2	-	137.2
4	-	177.3	-	177.3
5	-	162.5	-	162.6
6	6.20 (1H, d, J) = 1.8 Hz)	99.3	6.20 (1H, d , $J = 2.0 \text{ Hz}$)	99.1
7	-	165.6	-	165.6
8	6.41 (1H, d, J) = 1.8 Hz)	94.4	6.41 (1H, d , $J = 2.0 \text{ Hz}$)	94.4
9	-	158.3	-	158.2
10	-	104.5	-	104.5
1'	-	124.2	-	124.1
2'	7.75 (1H, d, J) = 2.4 Hz)	116.0	7.75 (1H, d , $J = 2.2 \text{ Hz}$)	116.0
3'	-	146.2	-	146.2
4'	-	148.0	-	148.0
5'	6.91 (1H, d, J) = 9 Hz)	116.2	6.99 (1H, d , $J = 8.5 \text{ Hz}$)	116.2
6'	7.66 (1H, <i>dd</i> , <i>J</i> = 9.0, 2.4 Hz)	121,7	7.65 (1H, dd , J = 8.5; 2 Hz)	121,7

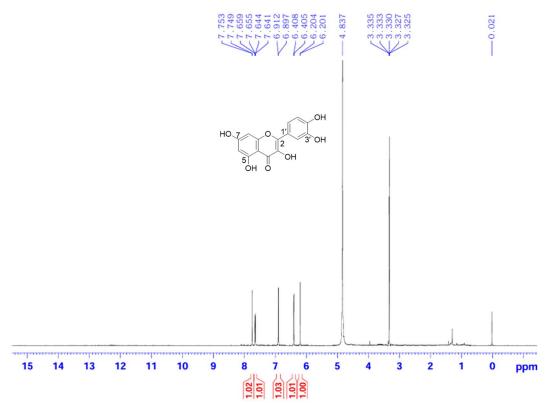
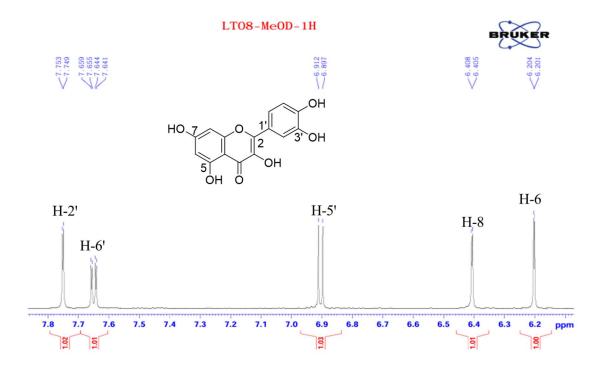



Figure S6: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound 2 (quercetin)

Figure S7: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound **2** (quercetin) (from $\delta_{\rm H}$ 6 ppm to $\delta_{\rm H}$ 8 ppm)

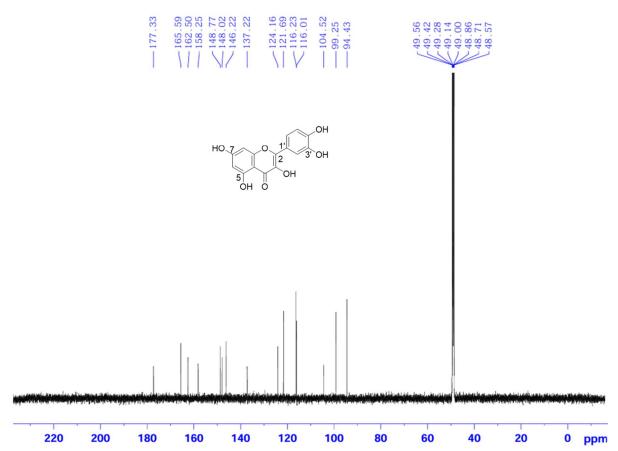
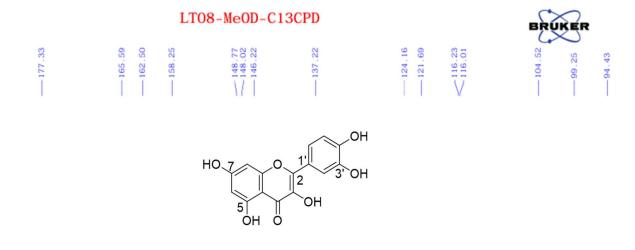
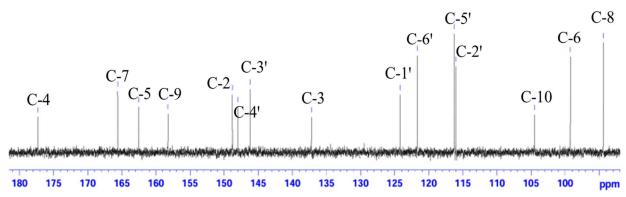
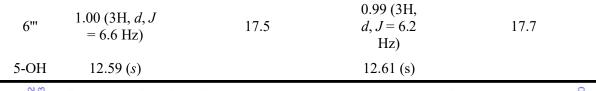



Figure S8: ¹³C-NMR (150 MHz, CD₃OD) spectrum of compound 2 (quercetin)




Figure S9: ¹³C-NMR (150 MHz, CD₃OD) spectrum of compound 2 (quercetin) (from $\delta_{\rm C}$ 95 ppm to $\delta_{\rm C}$ 180 ppm)

4. Supplementary spectroscopic data of compound 3.

Table S6: The comparison of NMR data of compound **3** with a similar compound (Quercetin-3-*O*-rutinoside).

	Compound 3 (DMSO- d_6)		Quercetin-3-O-rutinoside (DMSO-d ₆)[5	
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm
2	-	156.5	-	156.5
3	-	133.3	-	133.3
4	-	177.3	-	177.3
5	-	161.2	-	161.2
6	6.19 (1H, <i>d</i> , <i>J</i> =1.8 Hz)	98.6	6.19 (1H, d, J = 2.0 Hz)	98.7
7	-	164.0	-	164.2

8	6.38 (1H, <i>d</i> , <i>J</i> =1.8 Hz)	93.5	6.38 (1H, $d, J = 2.0$ Hz)	93.6
9	-	156.4	-	156.4
10	-	103.9	-	103.9
1'	-	121.1	-	121.1
2'	7.55 (1H, m, J) = 8.4; 2.4 Hz)	115.2	7.53 (1H, <i>m</i> , <i>J</i> = 8.5; 2.0 Hz)	115.2
3'	-	144.7	-	144.7
4'	-	148.4	-	148.4
5'	6.84 (1H, d, J) = 8.4 Hz)	116.2	6.84 (1H, d, J = 8.2 Hz)	116.2
6'	7.55 (1H, <i>m</i> , <i>J</i> = 8.4; 2.4 Hz)	121.5	7.53 (1H, <i>m</i> , <i>J</i> = 8.5; 2.0 Hz)	121.7
1"	5.35 (1H, d, J) = 7.2 Hz	101.1	5.34 (1H, d, J = 7.3 Hz)	101.2
2"	3.21 – 3.39 (1H, <i>m</i>)	74.0	3.15 - 3.41 (m)	74.1
3"	3.21 – 3.39 (1H, <i>m</i>)	76.4	3.15 - 3.41 (m)	76.4
4"	3.21 – 3.39 (1H, <i>m</i>)	70.0	3.15 – 3.41 (<i>m</i>)	70.0
5"	3.21 – 3.39 (1H, <i>m</i>)	75.9	3.15 – 3.41 (<i>m</i>)	75.9
6"	3.21 - 3.39 (1H, m) 3.72 (1H, d, J) = 10.2 Hz)	66.9	3.15 – 3.41 (<i>m</i>)	66.8
1""	$4.39 \text{ (1H, } brd, \\ J = 0.6 \text{ Hz)}$	100.7	4.38 (1H, s)	100.7
2""	3.04 – 3.09 (1 H, <i>m</i>)	70.3	3.05 - 3.10 (m)	70.4
3""	3.04 – 3.09 (1 H, <i>m</i>)	70.5	3.05 - 3.10 (m)	70.5
4'''	3.04 – 3.09 (1 H, <i>m</i>)	71.8	3.05 - 3.10 (m)	71.8
5"'	3.04 – 3.09 (1 H, <i>m</i>)	68.2	3.05 - 3.10 (m)	68.2

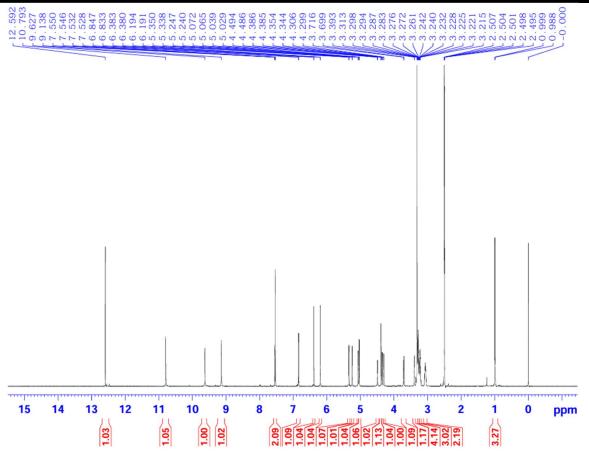


Figure S10: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of compound 3 (quercetin-3-*O*-rutinoside)

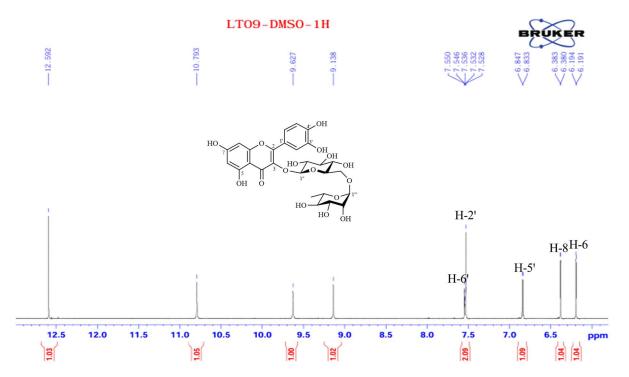


Figure S11: ¹H-NMR (600 MHz, DMSO- d_6) spectrum of compound 3 (quercetin-3-O-rutinoside) (from $\delta_{\rm H}$ 6 ppm to $\delta_{\rm H}$ 13 ppm)

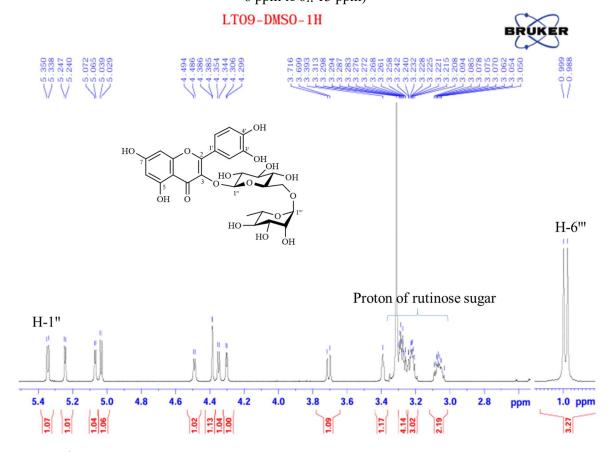


Figure S12: ¹H-NMR (600 MHz, DMSO- d_6) spectrum of compound 3 (quercetin-3-O-rutinoside) (from $\delta_{\rm H}$ 1.0 ppm to $\delta_{\rm H}$ 5.5 ppm)

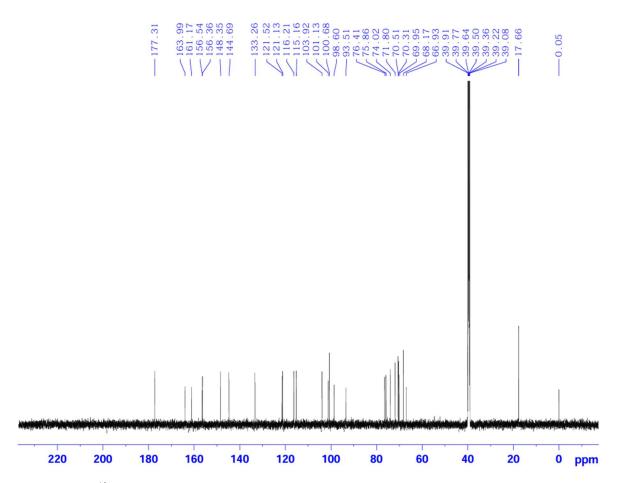


Figure S13: ¹³C-NMR (150 MHz, DMSO-d₆) spectrum of compound 3 (quercetin-3-O-rutinoside)

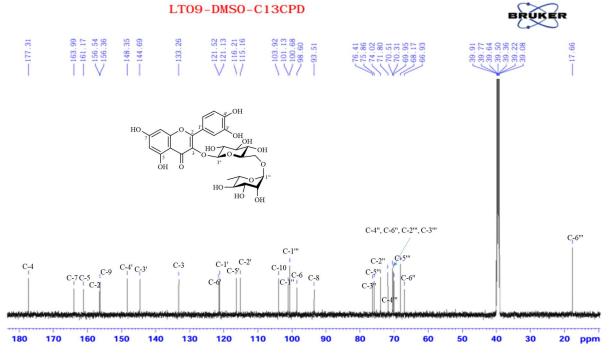
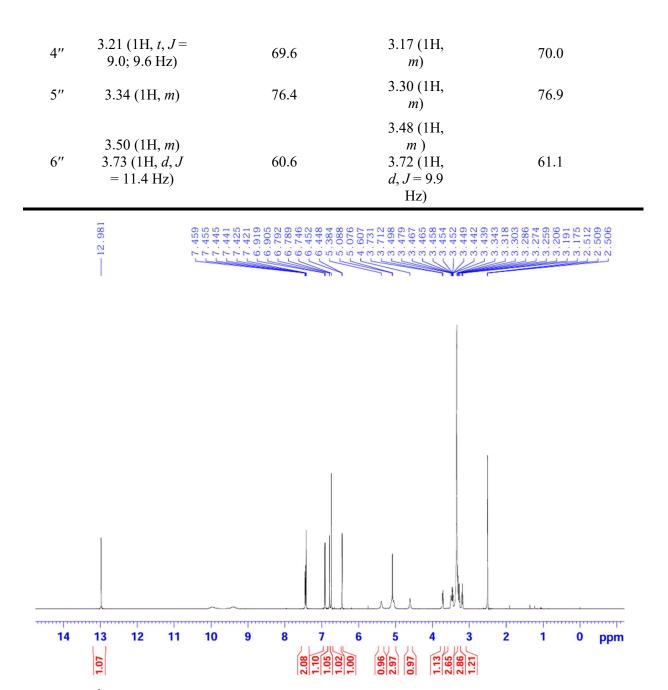



Figure S14: ¹³C-NMR (150 MHz, DMSO- d_6) spectrum of compound 3 (quercetin-3-O-rutinoside) (from δ_C 20 ppm to δ_C 185 ppm)

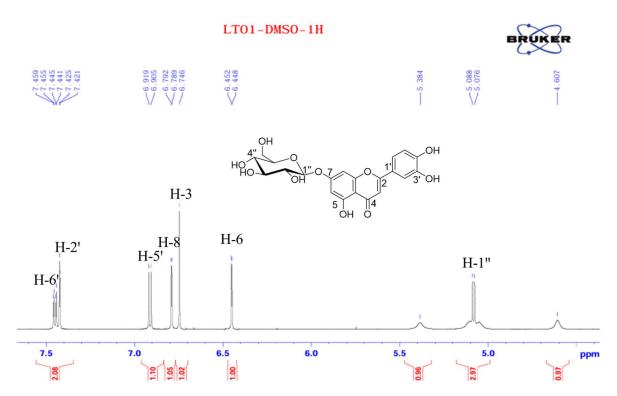
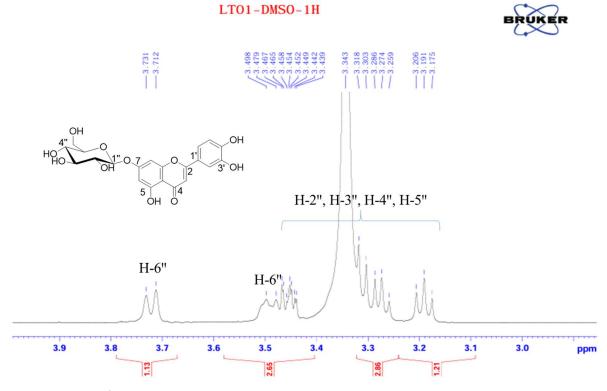

4. Supplementary spectroscopic data of compound 4.

Table S7: The comparison of NMR data of compound **4** with a similar compound (Luteolin-7-*O*-β-glucopyranoside).


	Compound 4 (DMSO-d ₆)		Luteolin-7- O - β -D-glucopyranoside (DMSO- d_6) [4]		
Position	¹³ C-NMR (150 MHz) δ _C ppm	¹ H-NMR (600 MHz) δ _H ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm	
2	-	164.5	-	164.9	
3	6.75 (1H, s)	103.2	6.76 (1H, s)	103.5	
4	-	181.9	-	182.3	
5	-	161.1	-	161.6	
6	6.45 (1H, <i>d</i> , <i>J</i> = 2.4 Hz)	99.5	6.45 (1H, d, J = 1.7 Hz)	99.9	
7	-	162.9	-	163.4	
8	6.79 (1H, d, J = 1.8 Hz)	94.7	6.79 (1H, d, J = 1.7 Hz)	95.1	
9	-	156.9	-	157.4	
10	-	105.3	-	105.8	
1′	-	121.4	-	121.6	
2′	7.43 (1H, d, J = 2.4 Hz)	113.6	7.43 (1H, d, J = 8.4 Hz)	113.9	
3′	-	145.8	-	146.4	
4′	-	149.9	-	150.7	
5′	6.92 (1H, <i>d</i> , <i>J</i> = 8.4 Hz)	116.0	6.90 (1H, $d, J = 8.4$ Hz)	116.4	
6′	7.46 (1H, <i>dd</i> , <i>J</i> = 8.4; 2.4 Hz)	119.1	7.45 (1H, dd , $J = 8.3$; 2.3 Hz)	119.6	
1"	5.09 (1H, d, J) = $7.2 Hz$	99.9	5.08 (1H, d, J = 7.3 Hz)	100.3	
2"	3.28 (1H, <i>m</i>)	73.1	3.26 (1H, <i>m</i>)	73.6	
3"	3.45 (1H, <i>m</i>)	77.1	3.45 (1H, <i>m</i>)	77.6	

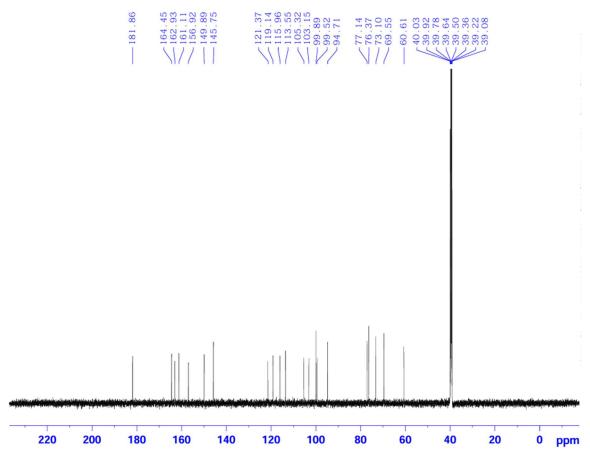

Figure S15: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of compound **4** (luteolin-7-*O*-β-D-glucopyranoside)

Figure S16: ¹H-NMR (600 MHz, DMSO- d_6) spectrum of compound **4** (luteolin-7-O- β -D-glucopyranoside) (from $\delta_{\rm H}$ 4 ppm to $\delta_{\rm H}$ 7.5 ppm)

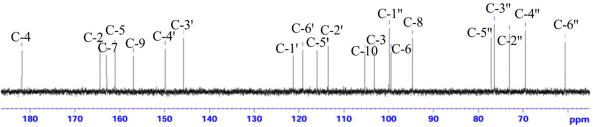


Figure S17: ¹H-NMR (600 MHz, DMSO- d_6) spectrum of compound **4** (luteolin-7-O- β -D-glucopyranoside) (from $\delta_{\rm H}$ 3 ppm to $\delta_{\rm H}$ 4 ppm)

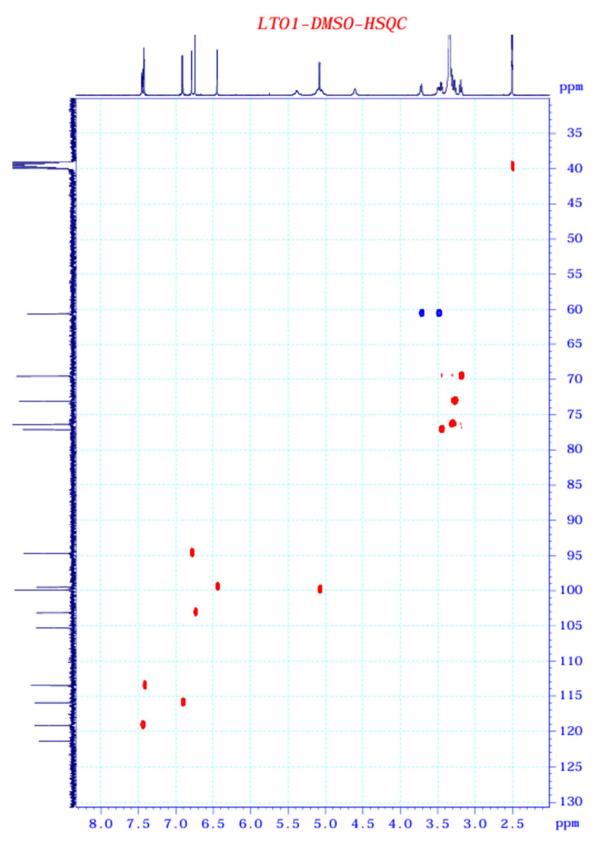
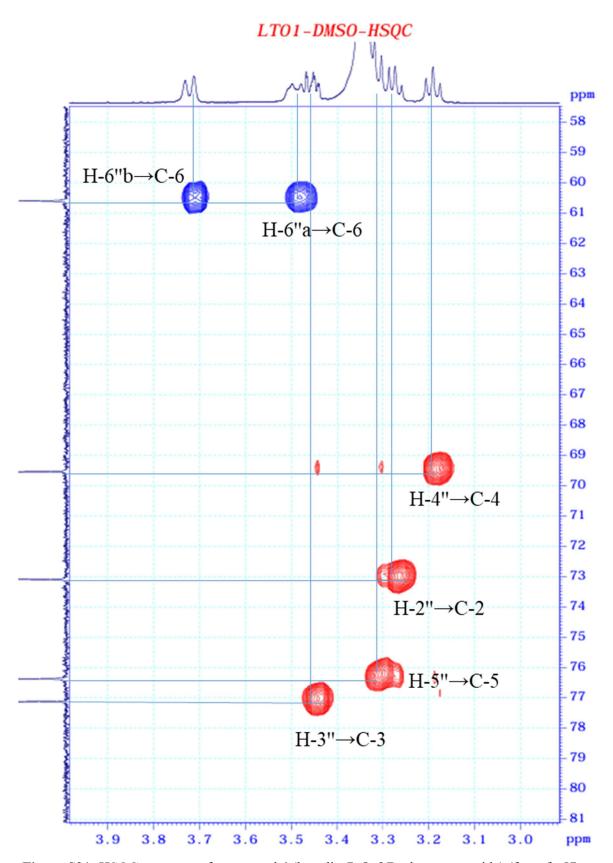
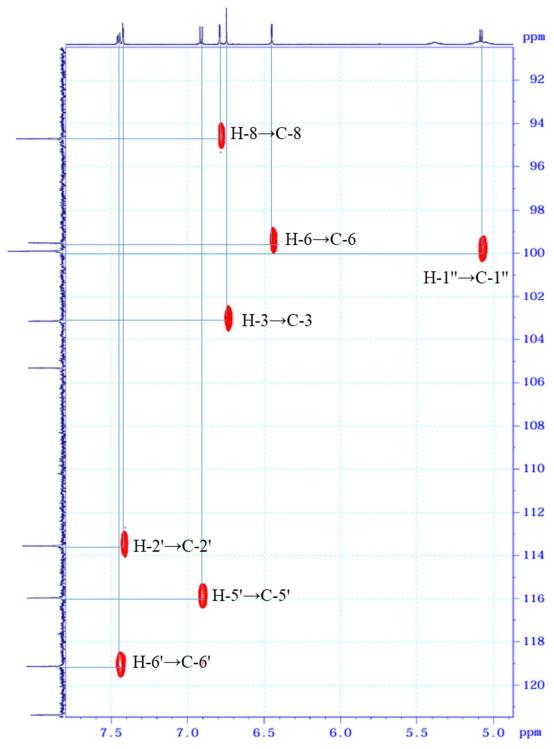
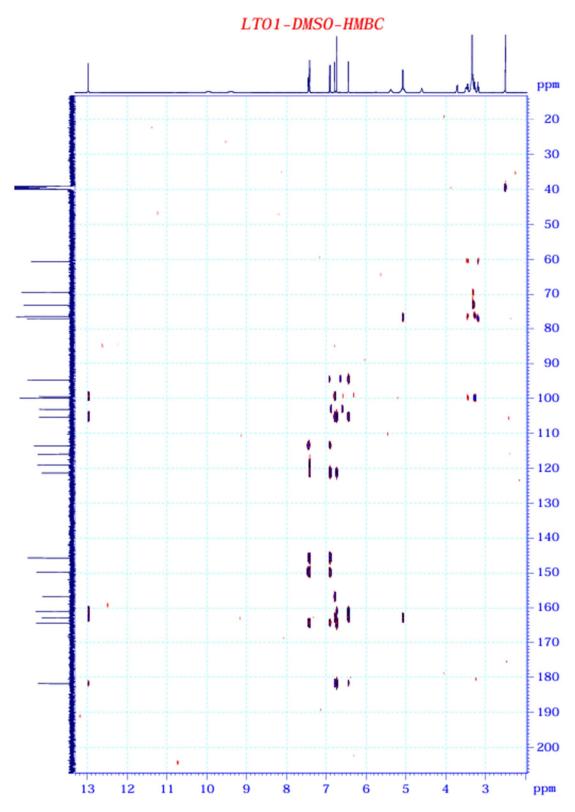


Figure S18: 13 C-NMR (150 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7-O-β-D-glucopyranoside)




Figure S19: ¹³C-NMR (150 MHz, DMSO- d_6) spectrum of compound 4 (luteolin-7-O- β -D-glucopyranoside) (from δ_C 60 ppm to δ_C 185 ppm)


Figure S20: HSQC spectrum of compound **4** (luteolin-7-*O*-β-D-glucopyranoside)

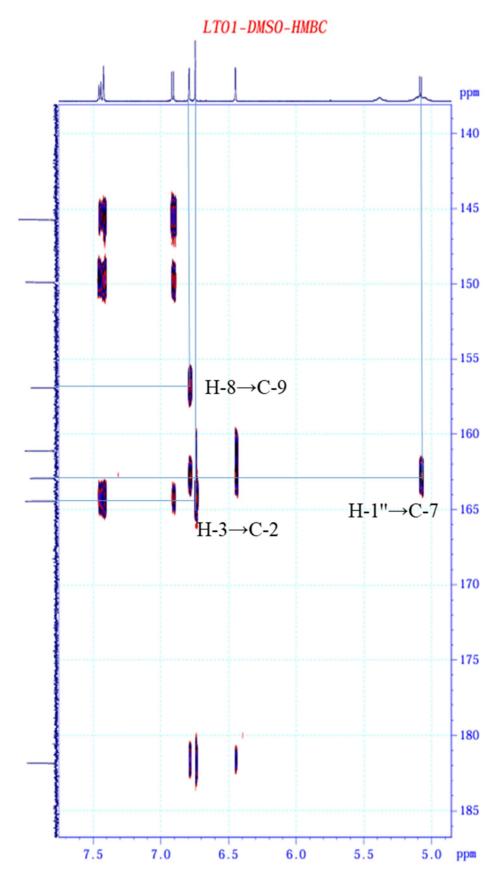

Figure S21: HSQC spectrum of compound **4** (luteolin-7-*O*- β -D-glucopyranoside) (from δ_C 57 ppm to δ_C 8 ppm)

Figure S22: HSQC spectrum of compound **4** (luteolin-7-*O*- β -D-glucopyranoside) (from δ_C 90 ppm to δ_C 120 ppm)

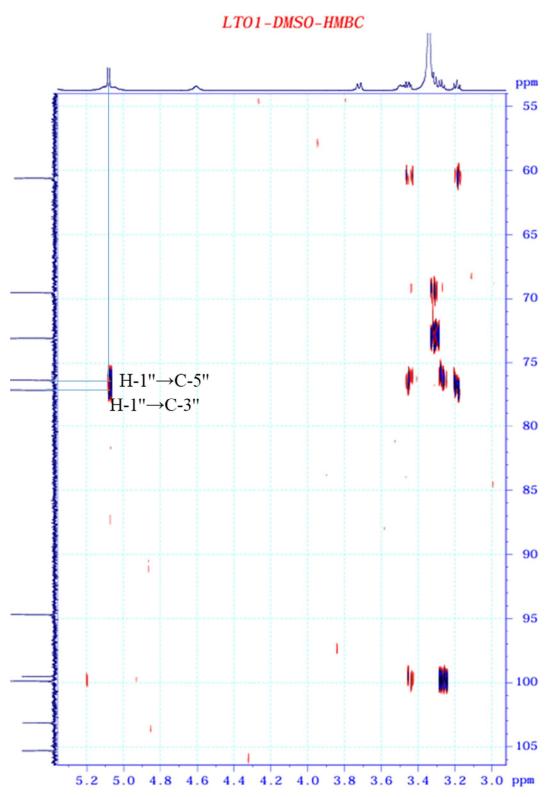


Figure S23: HMBC spectrum of compound **4** (luteolin-7-*O*-β-D-glucopyranoside)

Figure S24: HMBC spectrum of compound **4** (luteolin-7-*O*- β -D-glucopyranoside) (from $\delta_{\rm C}$ 140 ppm to $\delta_{\rm C}$ 185 ppm)

© 2024 ACG Publications. All rights reserved.

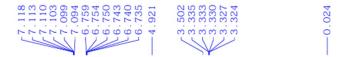


Figure S25: HMBC spectrum of compound **4** (luteolin-7-O- β -D-glucopyranoside) (from $\delta_{\rm C}$ 55 ppm to $\delta_{\rm C}$ 105 ppm)

5. Supplementary spectroscopic data of compound 5.

Table S8: The comparison of NMR data of compound **5** with a similar compound (2-(4-hydroxyphenyl)acetic acid)

	Compound	Compound 3 (CD ₃ OD)		2-(4-Hydroxyphenyl)acetic acid (CD ₃ OD) [3]	
Position	¹³ C-NMR (150 MHz) δ _C ppm	1 H-NMR (600 MHz) $_{\delta_{H}}$ ppm	¹³ C-NMR (125 MHz) δ _C ppm	¹ H-NMR (500 MHz) δ _H ppm	
1	-	126.8	-	127.1	
2, 6	7.09 (2H, <i>d</i> , <i>J</i> = 8.4 Hz)	131.3	7.08 (2H, <i>d</i> , <i>J</i> = 8.3 Hz)	131.5	
3, 5	6.74 (2H, <i>d</i> , <i>J</i> = 8.4 Hz)	116.2	6.72 (2H, d , J = 8.5 Hz)	116.3	
4	-	157.4	-	157.6	
7	3.50 (2H, s)	41.1	3.5 (2H, s)	41.7	
8	-	176.3	-	176.2	

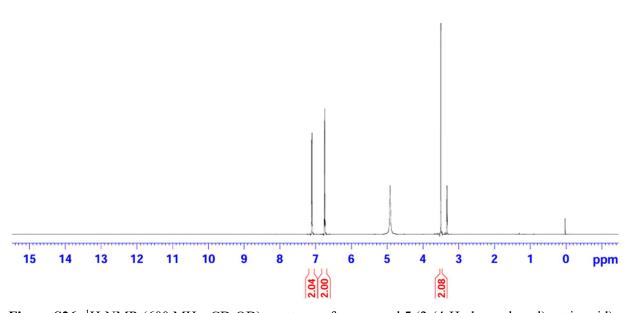
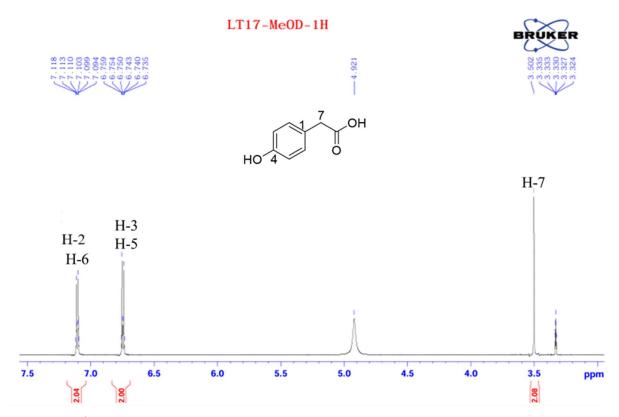



Figure S26: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound 5 (2-(4-Hydroxyphenyl)acetic acid)

Figure S27: ¹H-NMR (600 MHz, CD₃OD) spectrum of compound **5** (2-(4-Hydroxyphenyl)acetic acid) (from $\delta_{\rm H}$ 3 ppm to $\delta_{\rm H}$ 7.5 ppm)

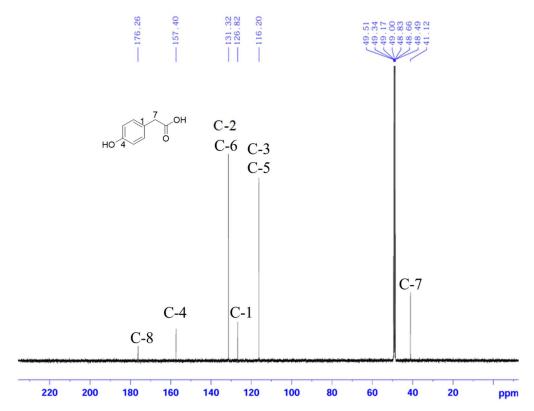
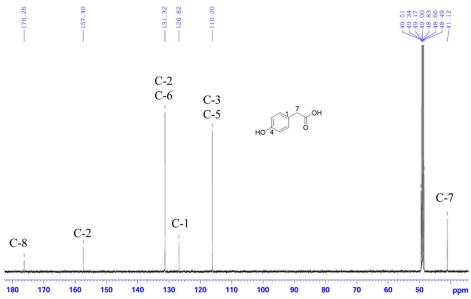



Figure S28: ¹³C-NMR (150 MHz, CD₃OD) spectrum of compound 5 (2-(4-Hydroxyphenyl)acetic acid)

Figure S29: ¹³C-NMR (150 MHz, CD₃OD) spectrum of compound **5** (2-(4-Hydroxyphenyl)acetic acid) (from $\delta_{\rm C}$ 40 ppm to $\delta_{\rm C}$ 180 ppm)