Supporting Information

Org. Commun. 17:4 (2024) 178-192

Synthesis and antimicrobial evaluation of

2-thioxoimidazolidinone derivatives

Aiyagala M. M. Mallikarjunaswamy¹, Praveen Naik²,

Momidi Bharath Kumar³, Kuruvalli Gouthami⁴, Vaddi Damodara Reddy⁴ and Vipin A. Nair ⁵*

¹ Department of Chemistry, REVA University, Yelahanka, Bangalore 560064, India ² Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore 560064, India ³ Department of Chemistry, S.V. Arts College (TTD), Tirupati 517501, Andhra Pradesh, India

⁴ Department of Biotechnology, REVA University, Yelahanka, Bangalore 560064, India ⁵ School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana, Kollam, Kerala 690525, India

Table of Content	Page
Figure S1: ¹ H NMR of (3a)	3
Figure S2: ¹³ C NMR of (3a)	5
Figure S3: ESI-MS of (3a)	6
Figure S4: ¹ H NMR of (3b)	7
Figure S5: ¹³ C NMR of (3b)	9
Figure S6: ESI-MS of (3b)	10
Figure S7: ¹ H NMR of (3c)	11
Figure S8: ¹³ C NMR of (3c)	13
Figure S9: ESI-MS of (3c)	14
Figure S10: ¹ H NMR of (3d)	15
Figure S11: ¹³ C NMR of (3d)	17
Figure S12: ESI-MS of (3d)	18
Figure S13: ¹ H NMR of (3e)	19
Figure S14: ¹³ C NMR of (3e)	21
Figure S15: ESI-MS of (3e)	22
Figure S16: ¹ H NMR of (3f)	23
Figure S17: ¹³ C NMR of (3f)	25
Figure S18: ESI-MS of (3f)	26
Figure S19: ¹ H NMR of (3g)	27
Figure S20: ¹³ C NMR of (3g)	29
Figure S21: ESI-MS of (3g)	30
Figure S22: ¹ H NMR of (3h)	31
Figure S23: ¹³ C NMR (3h)	33
Figure S24: ESI-MS of (3h)	34
Figure S25: ¹ H NMR of (3i)	35
Figure S26: ¹³ C NMR of (3 i)	37
Figure S27: ESI-MS of (3i)	38
Figure S28: ¹ H NMR of (3j)	39
Figure S29: ¹³ C NMR of (3j)	41
Figure S30: ESI-MS of (3j)	42

Figure S31: ¹ H NMR of (3 k)	43
Figure S32: ¹³ C NMR of (3 k)	45
Figure S33: ESI-MS of (3k)	46
Figure S34: ¹ H NMR of (3I)	47
Figure S35 : ¹³ C NMR of (3I)	49
Figure S36: ESI-MS of (31)	50
Figure S37: ¹ H NMR of (3m)	51
Figure S38 : ¹³ C NMR of (3m)	53
Figure S39: ESI-MS of (3m)	54
Figure S40: ¹ H NMR of (3n)	55
Figure S41: ¹³ C NMR of (3n)	57
Figure S42: ESI-MS of (3n)	58
Table S1. In vitro antibacterial activity of substituted 2-thioxoimidazolidinone	59
derivatives 3	

Figure S1: ¹H NMR of (3a)

Figure S1: ¹H NMR of (3a)

Figure S3: ESI-MS of (3a)

Figure S4: ¹H NMR of (3b)

Figure S4: ¹H NMR of (3b) (Continued)

Figure S6: ESI-MS of (3b)

Figure S7: ¹H NMR of (**3c**)

Figure S7: ¹H NMR of (3c) (Continued)

Figure S8: ¹³C NMR of (**3c**)

Figure S10: ¹H NMR of (3d)

Figure S10: ¹H NMR of (3d) (Continued)

Figure S12: ESI-MS of (3d)

Figure S13: ¹H NMR of (3e)

Figure S13: ¹H NMR of (3e) (Continued)

Figure S14: ¹³C NMR of (**3e**)

Figure S15: ESI-MS of (3e)

Figure S16: ¹H NMR of (3f)

Figure S16: ¹H NMR of (3f) (Continued)

Figure S17: ¹³C NMR of (**3f**)

Figure S18: ESI-MS of (3f)

Figure S19: ¹H NMR of (3g)

Figure S19: ¹H NMR of (3g) (Continued)

Figure S20: ¹³C NMR of (**3g**)

Figure S21: ESI-MS of (3g)

Figure S22: ¹H NMR of (3h)

© 2024 ACG Publications. All rights reserved.

Figure S22: ¹H NMR of (3h) (Continued)

Figure S23: ¹³C NMR of (3h)

Figure S24: ESI-MS of (3h)

Figure S25: ¹H NMR of (3i)

Figure S25: ¹H NMR of (3i) (Continued)

Figure S26: ¹³C NMR of (**3i**)

Figure S27: ESI-MS of (3i)

Figure S28: ¹H NMR of (3j)

© 2024 ACG Publications. All rights reserved.

Figure S28: ¹H NMR of (3j) (Continued)

Figure S29: ¹³C NMR of (3j)

Figure S30: ESI-MS of (3j)

Figure S31: ¹H NMR of (3k) (continued)

Figure S32: ¹³C NMR of (3k)

Figure S33: ESI-MS of (3k)

© 2024 ACG Publications. All rights reserved.

Figure S34: ¹H NMR of (3l) (Continued)

Figure S35: ¹³C NMR of (31)

Figure S36: ESI-MS of (3l)

Figure S37: ¹H NMR of (3m)

Figure S37: ¹H NMR of (3m) (Continued)

Figure S38: ¹³C NMR of (**3m**)

Figure S39: ESI-MS of (3m)

Figure S40: ¹H NMR of (3n)

Figure S40: ¹H NMR of (3n) (Continued)

Figure S41: ¹³C NMR of (3n)

Figure S42: ESI-MS of (3n)

Compound E. faecalis (+ve)				E. coli (-ve)			P. aeruginosa (-ve)			S. aureus (+ve)		
	50 μg/ well	75 μg/ well	100 μg/ well	50 μg/ well	75 μg/ well	100 μg/ well	50 μg/ well	75 μg/ well	100 μg/ well	50 μg/ well	75 μg/ well	100 μg/ well
3a	8 ± 1.1	15±1.6	18±2.2	16±1.9	16±1.9	16±1.9	14±1.6	15±2.1	19±1.7	16±1.9	18±2.7	21±1.9
3b	9±1.6	11±1.7	11±2.7	11±1.6	11±1.6	11±1.6	12 ± 2.8	11±1.9	18 ± 1.8	11±1.6	13±1.4	17±1.5
3c	8±1.2	10 ± 2.6	12±2.2	9±1.1	9±1.1	9±1.1	7±1.1	9±2.6	11±1.6	9±1.1	13±1.5	15±2.1
3d	10 ± 1.4	11±1.6	15±1.9	-	-	-	8±1.3	$9{\pm}2.4$	12±1	-	-	-
3e	10±2.3	11±1.3	15±1.3	7±1	7±1	7±1	11±1	12±2.3	14±1.3	7±1	11±2.1	13±1.3
3f	11±2.2	14±1.5	17±2.5	15±2.7	15±2.7	15±2.7	6±1.4	9±1.6	11±1.6	15±2.7		19±2.3
3g	-	-	10±2	9±1.3	9±1.3	9±1.3	-	-	-	9±1.3	11±3.1	13±3
3h	9±1	10 ± 2.1	12±2.2	-	-	-	-	7±1	8 ± 1.4	-	8±1.6	10±1.3
3i	-	-	8 ± 1.8	-	-	-	-	-	11±3	-	-	-
3i	14±1	15±3	17±2	10 ± 1	10 ± 1	10 ± 1	16±1	18±1	9±2	$10{\pm}1$	11±1	13±2
3k	-	-	7±2.1	-	-	-	-	-	8±1.3	-	-	-
31	8±3	12±1	14±1	7±1	7±1	7±1	9±1	11±2	12±2	7±1	11±3	13±1
3m	13±2	15±2	17±2	9±1	9±1	9±1	15±1	17±2	8 ± 1	9±1	10±1	12±1
3n	-	-	-	-	-	-	6±1	8.6±1	11±1.6	-	-	9±1
	28±2	30±3	33±2	35±2	35±2	35±2	34±2	38±3	33±1	35±2	41±1	44±1
Chloramphenicol	6.3±0.4	6.2 ± 0.2	6.1±0.3	6.2 ± 0.2	6.2 ± 0.2	6.2 ± 0.2	6.3±0.2	6.2±0.1	6.4±0.3	6.2 ± 0.2	6.2±0.4	6.2±0.1
ł	6.3±0.4	6.2±0.2	6.1±0.3	6.2 ± 0.2	6.2 ± 0.2	6.2 ± 0.2	6.3±0.2	6.2±0.1	6.4±0.3	6.2 ± 0.2	6.2±0.4	6.2±0.1

 Table S1. In vitro antibacterial activity of substituted 2-thioxoimidazolidinone derivatives 3