Supporting Information

Org. Commun. 17:4 (2024) 218-240

Synthesis, characterization, antioxidant, in silico based

virtual screening and anti- cancer potential of substituted

2-(4-acetyl-5-methyl-1h-1,2,3-triazol-1-yl)-n-

phenylacetamide derivatives

Aiyagala M. M. Mallikarjunaswamy¹, Kuruvalli Gouthami², Subhasish Maity², Vaddi Damodara Reddy² and Lakshmi Basavegowda ^{1*}

¹ Department of Chemistry, REVA University, Yelahanka, Bangalore 560064, India ² Department of Biotechnology, REVA University, Yelahanka, Bangalore 560064, India

Table of Contents	Page
Figure S1: ¹ H NMR of (3a)	3
Figure S2: ¹³ C NMR of (3a)	4
Figure S3: ESI-LCMS of (3a)	5
Figure S4: ¹ H NMR of (3b)	6
Figure S5: ¹³ C NMR of (3b)	7
Figure S6: ESI-LCMS of (3b)	8
Figure S7: ¹ H NMR of (3c)	9
Figure S8: ¹³ C NMR of (3c)	10
Figure S9: ESI-LCMS of (3c)	11
Figure S10: ¹ H NMR of (3d)	12
Figure S11: ¹³ C NMR of (3d)	13
Figure S12: ESI-LCMS of (3d)	14
Figure S13: ¹ H NMR of (3e)	15
Figure S14: ¹³ C NMR of (3e)	16
Figure S15: ESI-LCMS of (3e)	17
Figure S16: ¹ H NMR of (3f)	18
Figure S17: ¹³ C NMR of (3f)	19
Figure S18: ESI-LCMS of (3f)	20
Figure S19: ¹ H NMR of (3g)	21
Figure S20: ¹³ C NMR of (3g)	22
Figure S21: ESI-LCMS of (3g)	23
Figure S22: ¹ H NMR of (3h)	24
Figure S23: ¹³ C NMR of (3h)	25
Figure S24: ESI-LCMS of (3h)	26
Figure S25: ¹ H NMR of (3i)	27
Figure S26: ¹³ C NMR of (3i)	28
Figure S27: ESI-LCMS of (3i)	29
Figure S28: ¹ H NMR of (3j)	30
Figure S29: ¹³ C NMR of (3j)	31

Figure S30: ESI-LCMS of (3j)	32
Figure S31: ¹ H NMR of (3 k)	33
Figure S32 : ¹³ C NMR of (3 k)	34
Figure S33: ESI-LCMS of (3k)	35
Figure S34: ¹ H NMR of (3l)	36
Figure S35: ¹³ C NMR of (3l)	37
Figure S36: ESI-LCMS of (31)	38
Figure S37: ¹ H NMR of (3m)	39
Figure S38: ¹³ C NMR of (3m)	40
Figure S39: ESI-LCMS of (3m)	41
Figure S40: ¹ H NMR of (3n)	42
Figure S41: ¹³ C NMR of (3n)	43
Figure S42: ESI-LCMS of (3n)	44
S1: DPPH and ABTS	45
Table S1: The radical scavenging activity of synthesized compounds using	46
DPPH assay	
Table S2: The radical scavenging activity of synthesized compounds using	46
ABTS assay	
Table S3: Drug likeness properties of synthesized compounds with	47
reference drug	
S2: Molecular Docking	48
Figure S43: 2D and 3D poses of synthesized compounds and reference drug	48-49
with their binding complex of protein HIF-1α.	
Figure S44: 2D and 3D poses of synthesized compounds and reference drug	50-51
with their binding complex of protein HER2.	

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S3: ESI-LCMS of (3a)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S9: ESI-LCMS of (3c)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S12: ESI-LCMS of (3d)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S15: ESI-LCMS of (3e)

Figure S16: ¹H NMR of (3f)

Figure S18: ESI-LCMS of (3f)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S21: ESI-LCMS of (3g)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

25

Figure S24: ESI-LCMS of (3h)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S30: ESI-LCMS of (3j)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

33

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Figure S33: ESI-LCMS of (3k)

© 2024 ACG Publications. All rights reserved.

Figure S36: ESI-LCMS of (3l)

Figure S39: ESI-LCMS of (3m)

Figure S42: ESI-LCMS of (3n)

S1:DPPH and ABTS

Compounds	% Free RSA mean value ± SD (μg/mL)				
	5 μg/mL	10 μg/mL	20 μg/mL	50 μg/mL	100 μg/mL
3 a	13.80 ± 0.24	56.80±2.2	73.10±1.4	76.10±1.4	79.60±1.7
3b	13.30 ± 0.36	54.80 ± 1.4	72.90 ± 0.62	75.80 ± 0.68	78.50±1.4
3c	18.30 ± 0.54	56.02 ± 0.64	73.50±1.34	76.30±1.42	79.30±2.4
3d	18.70 ± 0.44	55.30±1.8	73.90 ± 0.94	76.60 ± 2.1	79.80±1.5
3 e	21.10±1.54	57.10 ± 0.78	73.90±0.74	$78.80{\pm}2.4$	80.20±2.4
3f	14.10 ± 2.4	54.20 ± 1.84	72.20 ± 0.46	75.40 ± 0.54	78.30±2.7
3g	$15.30{\pm}1.4$	54.80 ± 0.6	$71.90{\pm}1.7$	75.10±0.4	$77.90{\pm}1.8$
3h	$18.10\pm\!\!0.8$	56.90±1.9	74.30±1.3	$79.10{\pm}2.8$	81.10±1.6
3i	18.1 ± 1.4	56.30±2.8	73.50±2.4	76.20 ± 2.0	79.40 ± 2.0
3ј	15.10 ± 2.6	55.30±2.3	72.10±1.8	$75.90{\pm}0.8$	78.90 ± 0.6
3k	16.80 ± 2.5	58.90 ± 0.8	72.10±1.6	75.90 ± 2.8	$78.10{\pm}0.8$
31	$12.90\pm\!\!0.6$	53.90±1.8	$71.80{\pm}2.2$	75.30±1.5	77.70±1.9
3m	16.60 ± 0.4	58.10±1.4	72.50 ± 2.8	76.20±1.7	78.70 ± 2.8
3n	21.40 ± 0.8	57.90±1.6	$73.90{\pm}0.8$	$78.10{\pm}2.6$	80.70 ± 2.8
Ascorbic acid	2.10 ± 1.26	$23.80\pm\!\!0.5$	51.10±1.8	85.20±0.9	87.10±3.2

Table S1: The radical scavenging activity of synthesized compounds using DPPH assay

Table S2: The radical scavenging activity of synthesized compounds using ABTS assay

Compounds	% Free RSA mean value ± SD (μg/mL)				
	5 μg/ml	10 μg/mL	5 μg/mL	50 μg/mL	5 μg/ml
3a	25.30±2.14	3a	25.30±2.14	3a	25.30±2.14
3b	28.40 ± 0.6	3 b	28.40±0.6 3b		28.40 ± 0.6
3c	26.60±1.7	3c	26.60±1.7	26.60±1.7 3 c	
3d	$21.60{\pm}1.8$	3d	21.60±1.8 3d		21.60 ± 1.8
3 e	$2.50{\pm}1.5$	3e	2.50±1.5 3e		$2.50{\pm}1.5$
3 f	$7.70{\pm}1.6$	3 f	7.70±1.6 3f		$7.70{\pm}1.6$
3g	$9.00{\pm}1.8$	3g	9.00±1.8 3 g		$9.00{\pm}1.8$
3h	$10.90{\pm}1.5$	3h	10.90±1.5 3h		$10.90{\pm}1.5$
3i	$37.30{\pm}2.8$	3i	37.30±2.8 3i 3		37.30 ± 2.8
3ј	25.10±1.5	3ј	25.10±1.5 3 j 25		25.10±1.5
3k	14.10 ± 2.8	3k	14.10 ± 2.8	3k	14.10 ± 2.8
31	3.10±0.4	31	$3.10{\pm}0.4$	31	3.10±0.4
3m	5.80 ± 0.4	3m	$5.80{\pm}0.4$	3m	5.80 ± 0.4
3n	4.40 ± 0.9	3n	$4.40{\pm}0.9$	3n	4.40 ± 0.9
Gallic acid	8.40 ± 0.6	Gallic acid	$8.40{\pm}0.6$	Gallic acid	8.40±0.6

Compounds	Lipinski	Ghose	Veber	Egan	Muegge	Bioavailability
	-			_		Score
3a	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3b	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3c	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3d	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3e	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3f	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3g	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3h	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3i	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3ј	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3k	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
31	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3m	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
3n	Yes; 0 violation	Yes	Yes	Yes	Yes	0.55
Cisplatin	Yes; 0 violation	No	Yes	Yes	No	0.56

Table S3: Drug likeness properties of synthesized compounds with reference drug

HIF-1 alpha

© 2024 ACG Publications. All rights reserved.

Figure S43: 2D and 3D poses of synthesized compounds and reference drug with their binding complex of protein HIF-1 α .

MET B:801

VAL B:73 LEU B:800

PHE B:1004

LEU B:800

3i

ALA B:751 PHE 1004

VAL B:734 LEU B:726

B-852

ALA B:751 B:852

LYS A:753 A:862 VAL A:734 LEU A:785 LEU A:852 PHE A:864 LEU A:796

3e

VAL B:734

© 2024 ACG Publications. All rights reserved.

Figure S44: 2D and 3D poses of synthesized compounds and reference drug with their binding complex of protein HER2.