Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

A New Antibacterial Diterpene with a Fused 6-5-6-6 Ring System, Trichodermanin I, Isolated from the Soil-Derived Fungus Trichoderma atroviride YD-13

Liang Hong 1, #, Rui Chen, #, Linsa Zhou^{3,*} and Jie Lin ^{2,*}

Table of Contents	Page
Figure S1: HRESIMS spectrum of 1	2
Figure S2: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1	3
Figure S3: Enlarged ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1	3
Figure S4: ¹³ C-NMR and DEPT (125 MHz, CDCl ₃) spectra of 1	4
Figure S5: Enlarged ¹³ C-NMR and DEPT (125 MHz, CDCl ₃) spectra of 1	4
Figure S6: HSQC spectrum of 1	5
Figure S7: Enlarged HSQC spectrum of 1	6
Figure S8: Enlarged HSQC spectrum of 1	7
Figure S9: HMBC spectrum of 1	8
Figure S10: Enlarged HMBC spectrum of 1	9
Figure S11: Enlarged HMBC spectrum of 1	10
Figure S12: ¹ H- ¹ H COSY spectrum of 1	11
Figure S13: Enlarged ¹ H- ¹ H COSY spectrum of 1	12
Figure S14: Enlarged ¹ H- ¹ H COSY spectrum of 1	13
Figure S15: NOESY spectrum of 1	14
Figure S16: Enlarged NOESY spectrum of 1	15
Figure S17: Enlarged NOESY spectrum of 1	15
Figure S18: Scifinder search results of 1	16
Table S1: ¹ H and ¹³ C NMR data of compounds 1-4	17

¹Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian 325200, China

²Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian 325200, China

³Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China

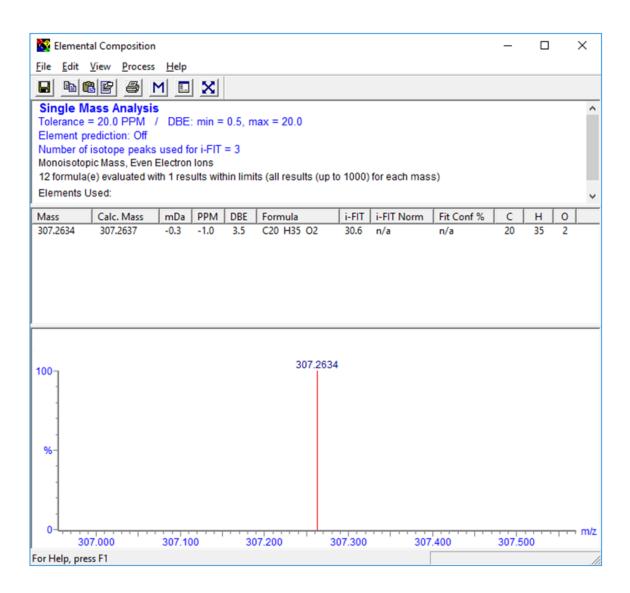


Figure S1: HRESIMS spectrum of 1

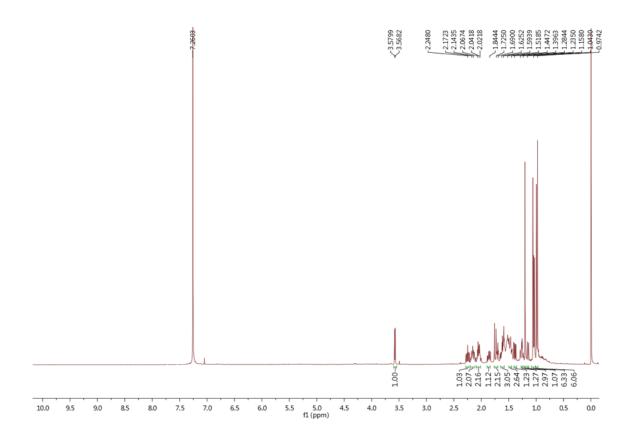


Figure S2: ¹H-NMR (500 MHz, CDCl₃) spectrum of 1

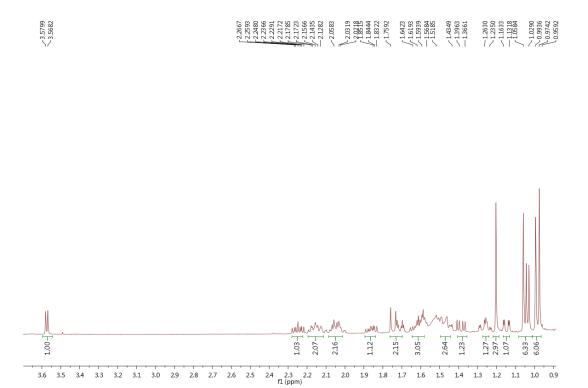


Figure S3: Enlarged ¹H-NMR (500 MHz, CDCl₃) spectrum of 1

© 2025 ACG Publications. All rights reserved.

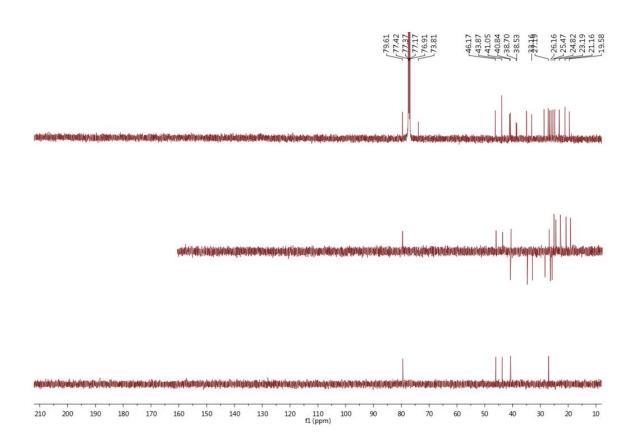


Figure S4: ¹³C-NMR and DEPT (125 MHz, CDCl₃) spectra of 1

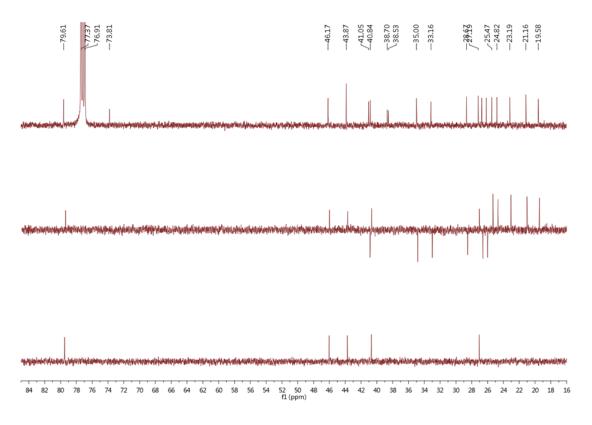


Figure S5: Enlarged ¹³C-NMR and DEPT (125 MHz, CDCl₃) spectra of 1

© 2025 ACG Publications. All rights reserved.

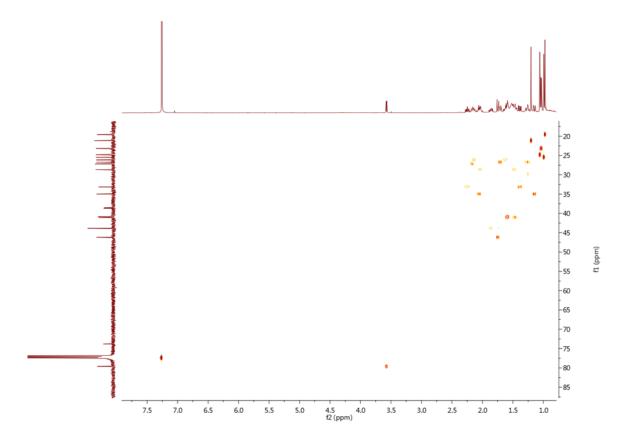


Figure S6: HSQC spectrum of 1

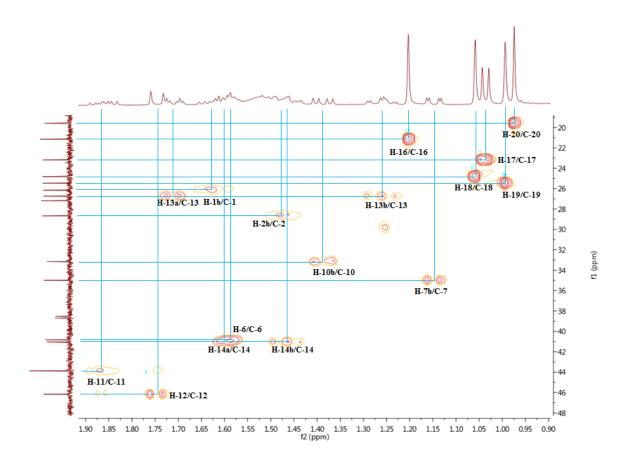


Figure S7: Enlarged HSQC spectrum of 1

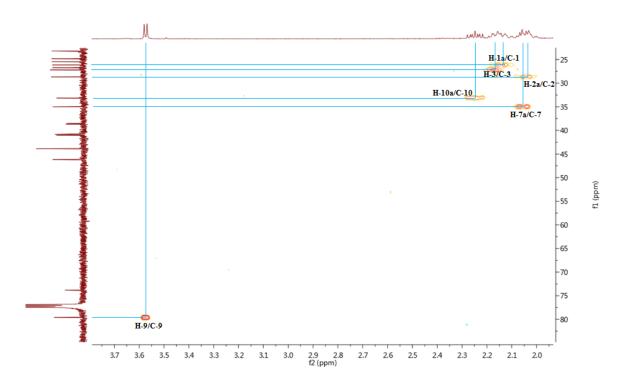


Figure S8: Enlarged HSQC spectrum of 1

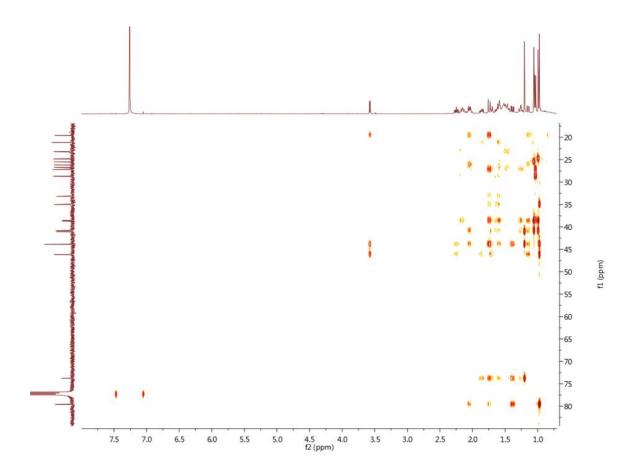


Figure S9: HMBC spectrum of 1

Figure S10: Enlarged HMBC spectrum of 1

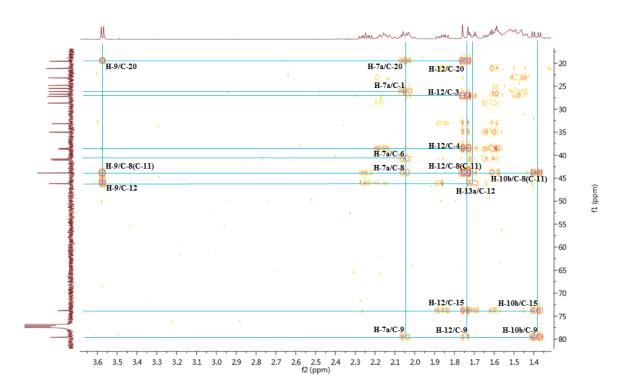


Figure S11: Enlarged HMBC spectrum of 1

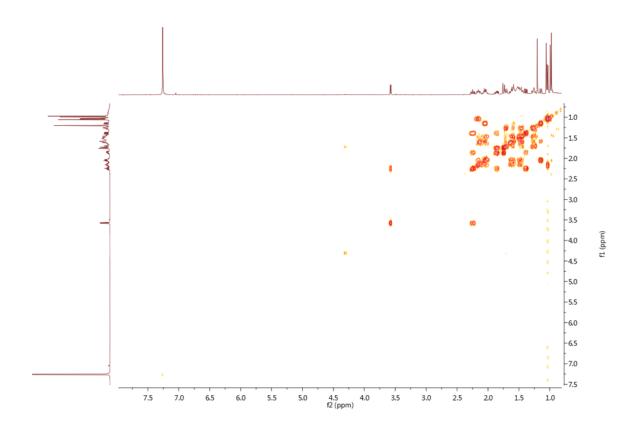


Figure S12: ${}^{1}\text{H-}{}^{1}\text{H COSY}$ spectrum of 1

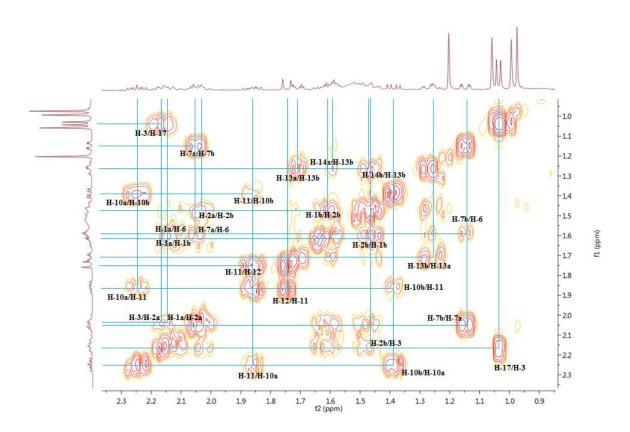


Figure S13: Enlarged ¹H-¹H COSY spectrum of 1

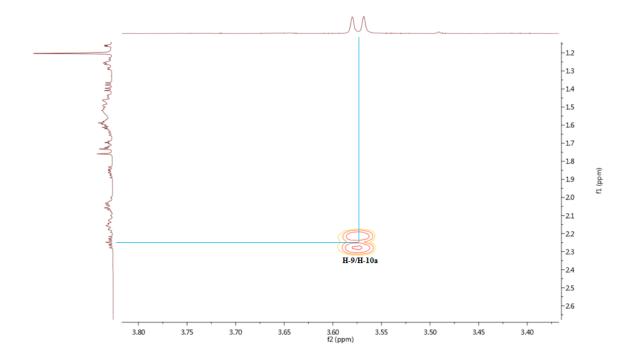


Figure S14: Enlarged ¹H-¹H COSY spectrum of 1

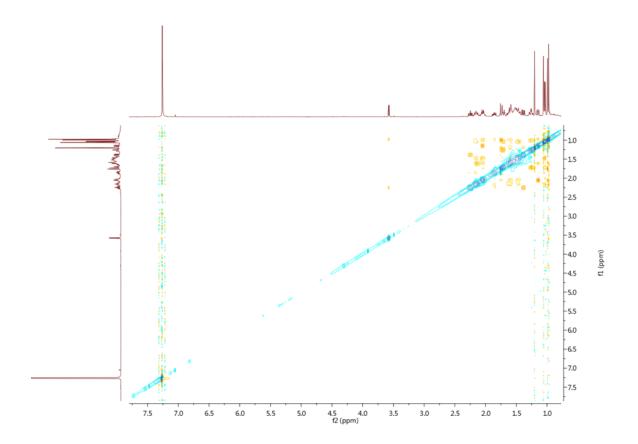


Figure S15: NOESY spectrum of 1

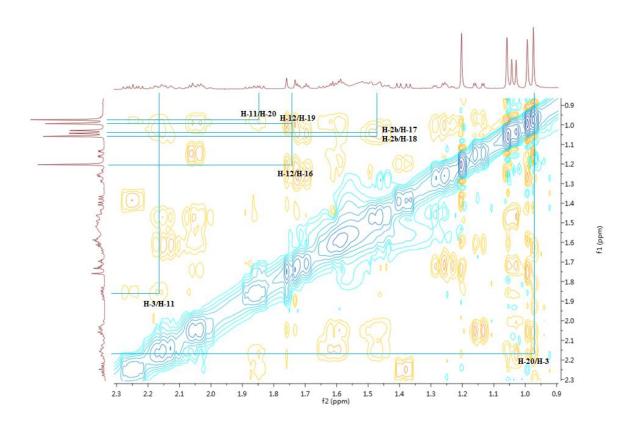


Figure S16: Enlarged NOESY spectrum of 1

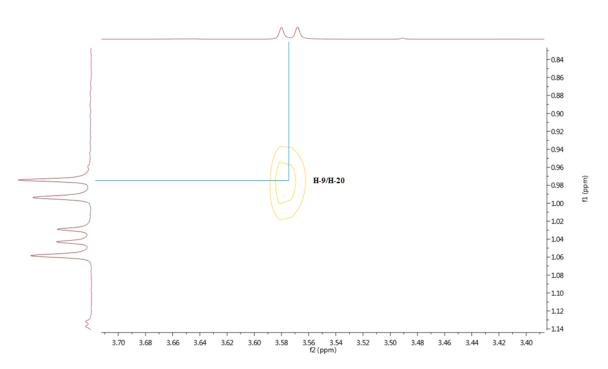


Figure S17: Enlarged NOESY spectrum of 1

Substances search for drawn structure Reactions → Suppliers → I Suppliers ■ Save ▼ Filtering: Similarity: 3 Selected ▼ X Number of Components: 1 X Clear All Filters As Drawn (0) 381 Results Sort: Relevance ▼ View: Partial ▼ Substructure (0) 98 ••• 92 ••• Similarity (198K) 1355394-77-2 95221-82-2 2933872-44-5 Chemscape Analysis Visually explore structure similarity with a powerful new Learn more about Chemscape. C₂₀H₃₄O₂ C₂₂H₃₈O₂ C₁₉H₃₂O₃ (2aS,3S,5aR,6R,8S,9S,10aS,10bR)-Dodeca hydro-3,6,10a,11,11-pentamethyl-3*H*-5a, 5α-Androstane-3β,17β-diol, 4,4,17-trimethyl-Filter Behavior **A** 0 **▲** 53K ₫ 8,824 Exclude Search Within Results 92 ••• 92 ••• 92 ••• ^ Similarity 87013-77-2 1818243-49-0 1818243-48-9 95-98 (1) 90-94 (18) **85-89** (362)

Figure S18: Scifinder search results of 1

80-84 (1,791) 75-79 (6,366)

Table S1: ¹H and ¹³C NMR data of compounds 1-4

Pos	HO, 9 10 H OH 7 8 12 11 H OH 16 15 (18) 3 13		20 H OH 6 12 11 14 OH 6 5 18 3 13		20 8 12 11 HOH 7 8 12 11 HOH 6 19 4 H15 16 5 18 3 13		9 10 H OH 7 8 12 11 H OH 6 19 4 H 16 16 16 16 16	
	1 17		² 2 ¹⁷ [5]		$HO^{\prime\prime} \stackrel{1}{\underset{2}{\longrightarrow}} \stackrel{7}{\underset{17}{\longrightarrow}} $ [5]		OH 4 ¹⁷ [8]	
	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$, type	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}}\left(J\ \mathrm{in}\ \mathrm{Hz}\right)$	$\delta_{\rm C}$, type
1a	2.14, m	26.2, CH ₂	2.09, m	25.7, CH ₂	4.18, dd	72.7, CH	2.54, ddd	36.5, CH ₂
1b	1.63, m		1.61, m				1.68, m	
2a	2.04, m	28.7, CH ₂	2.00, dddd	28.8, CH ₂	2.61, ddd	42.3, CH ₂	4.30, ddd	74.2, CH
2b	1.47, m		1.46, m		1.43, ddd			
3	2.17, m	27.2, CH	2.11, m	26.6, CH	2.01, ddq	27.1, CH	1.98, qd	37.9, CH
4		38.5, C		38.8, C		39.3, C		40.8, C
5		38.7, C		38.7, C		39.6, C		39.0, C
6	1.59, m	40.8, CH	1.48, m	41.1, CH	1.42, m	52.8, CH	1.62, m	41.8, CH
7a	2.05, m	35.0, CH ₂	1.67, dd	43.0, CH ₂	1.74, dd	41.6, CH ₂	1.71, dd	42.5, CH ₂
7b	1.15, dd		1.49, m		1.64, dd		1.56, dd	
8		43.9, C		39.2, C		39.8, C		39.7, C
9a	3.57, d	79.6, CH	1.41, d	43.9, CH ₂	1.43, m	43.9, CH ₂	1.02, m	43.9, CH ₂
9b			1.01, d		1.02, m		1.43, m	
10a	2.25, ddd	33.2, CH ₂	1.78, m	21.6, CH ₂	1.79, m	22.2, CH ₂	1.60, m	21.6, CH ₂
10b	1.39, dd		1.56, m		1.58, m		1.81, m	
11	1.86, ddd	43.9, CH	1.87, ddd	44.4, CH	1.81, ddd	44.6, CH	1.85, m	44.4, CH
12	1.74, d	46.2, CH	1.27, d	52.0, CH	1.28, d	52.2, CH	1.30, d	51.9, CH
13a	1.71, dt	26.7, CH ₂	1.68, m	26.4, CH ₂	1.74, ddd	26.8, CH ₂	1.18, ddd	26.4, CH ₂
13b	1.26, ddd		1.21, ddd		1.24, ddd		1.68, m	
14a	1.59, m	41.0, CH ₂	1.57, ddd	40.8, CH ₂	1.62, ddd	41.4, CH ₂	1.62, m	41.1, CH ₂
14b	1.46, m		1.44, m		1.45, m		1.46, ddd	
15		73.8, C		73.9, C		73.8, C		73.8, C
16	1.20, s	21.2, CH ₃	1.17, s	20.5, CH ₃	1.18, s	21.3, CH ₃	1.18, s	20.4, CH ₃

22.9, CH₃

24.6, CH₃

 $25.6,\,CH_3$

19.9, CH₃

1.07, d

0.98, s

1.13, s

0.91, d

23.1, CH₃

26.6, CH₃

25.6, CH₃

20.5, CH₃

1.19, s

0.95, s

0.96, s

1.13, s

17

18

19

20

1.04, d

1.06, s

0.99, s

0.97, s

23.2, CH₃

24.8, CH₃

25.5, CH₃

19.6, CH₃

1.02, d

1.05, s

0.94, s

1.05, s

20.4, CH₃

25.3, CH₃

 $25.4,\,CH_3$

20.3, CH₃