Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

A New Cytotoxic Sesquiterpenoid from *Penicillium oxalicum* 2021CDF-3

Wei-Huan Luo¹, Lian-Cheng Xu¹, Guan-Yi Cao¹, and Yu Chen*1,2

¹ Department of General Surgery, Suqian First Hospital, Suqian 223800, People's Republic of China

Table of Contents	Page		
Figure S1: HRESIMS spectrum of 1			
Figure S2: ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectrum of 1			
Figure S3: Enlarged ¹ H NMR (500 MHz, DMSO-d ₆) spectrum of 1	4		
Figure S4: ¹³ C NMR and DEPT (125 MHz, DMSO-d ₆) spectra of 1			
Figure S5: HSQC spectrum of 1	6		
Figure S6: Enlarged HSQC spectrum of 1	7		
Figure S7: ¹ H- ¹ H COSY spectrum of 1	8		
Figure S8: HMBC spectrum of 1	9		
Figure S9: Enlarged HMBC spectrum of 1			
Figure S10: NOESY spectrum of 1			
Figure S11: Scifinder search results of 1			
Table S1: The comparison of NMR data of compounds 1 and 2	13		

² Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China

^{*}Corresponding author: E-mail: cheerychy@163.com (Yu Chen)

Figure S1: HRESIMS spectrum of ${\bf 1}$

Figure S2: ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 1

Figure S3: Enlarged ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of **1**

Figure S4: 13 C NMR and DEPT (125 MHz, DMSO- d_6) spectra of **1**

Figure S5: HSQC spectrum of $\bf 1$

Figure S6: Enlarged HSQC spectrum of 1

Figure S7: ¹H-¹H COSY spectrum of 1

Figure S8: HMBC spectrum of 1

Figure S9: Enlarged HMBC spectrum of 1

Figure S10: NOESY spectrum of $\bf 1$

Figure S11: Scifinder search results of 1

Table S1: The comparison of NMR data of compounds ${\bf 1}$ and ${\bf 2}$

No	1		2	
	$\delta_{\rm H}$ (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{\mathrm{H}}\left(J\ \mathrm{in}\ \mathrm{Hz} ight)$	$\delta_{\rm C}$, type
1		91.2, C		91.2, C
2		80.8, C		81.0, C
3	1.73, m; 1.16, td (12.8, 5.5)	$33.0, CH_2$	2.03, dd (12.4, 5.8); 0.95, m	$43.7, CH_2$
4	2.09, m; 1.46, m	$18.0, CH_2$	4.14, ddd (16.5, 10.8, 5.8)	62.1, CH
5	1.38, m	37.4, CH ₂	1.76, m (overlap); 1.14, m	47.8 , CH_2
6		78.5, C		78.5, C
7	2.12, t (8.9)	56.6, CH	1.97, t (9.0)	57.3, CH
8	1.82, m; 1.27, m	33.8 , CH_2	1.76, m (overlap); 1.20, m	33.8, CH ₂
9	2.64, tq (8.8, 4.9)	45.5, CH	2.56, m	45.4, CH
10	1.56, ddd (11.9, 4.9, 2.5); 1.38, m	$43.3, CH_2$	1.52, ddd (12.0, 4.4, 2.4); 1.36 t (12.0)	$43.2, CH_2$
11	0.99, s	22.0, CH_3	1.01, s (overlap)	$21.9, CH_3$
12	1.00, s	24.0, CH_3	1.01, s (overlap)	$23.5, CH_3$
13		147.9, C		147.8, C
14	4.72, br s; 4.69, br s	$109.1, CH_2$	4.67, br d (12.5)	$109.1, CH_2$
15	1.72, s	$21.9, CH_3$	1.68, s	$21.7, CH_3$
1-OH	4.64, s			