Supporting Information

Rec. Nat. Prod. 19:2 (2025) 193-197

A New Cytotoxic Sesquiterpenoid from *Penicillium oxalicum* 2021CDF-3

Wei-Huan Luo¹, Lian-Cheng Xu¹, Guan-Yi Cao¹ and Yu Chen^{*1,2}

¹ Department of General Surgery, Suqian First Hospital, Suqian 223800, People's Republic of China ² Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China

Table of Contents	Page		
Figure S1: HRESIMS spectrum of 1			
Figure S2: ¹ H NMR (500 MHz, DMSO- d_6) spectrum of 1	3		
Figure S3: Enlarged ¹ H NMR (500 MHz, DMSO- d_6) spectrum of 1	4		
Figure S4: ¹³ C NMR and DEPT (125 MHz, DMSO- d_6) spectra of 1	5		
Figure S5: HSQC spectrum of 1	б		
Figure S6: Enlarged HSQC spectrum of 1	7		
Figure S7: ¹ H- ¹ H COSY spectrum of 1	8		
Figure S8: HMBC spectrum of 1	9		
Figure S9: Enlarged HMBC spectrum of 1			
Figure S10: NOESY spectrum of 1	11		
Figure S11: Scifinder search results of 1	12		
Table S1: The comparison of NMR data of compounds 1 and 2			

^{*}Corresponding author: E-mail: cheerychy@163.com (Yu Chen)

Figure S1: HRESIMS spectrum of 1

Figure S2: ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 1

Figure S3: Enlarged ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of 1

Figure S4: ¹³C NMR and DEPT (125 MHz, DMSO-*d*₆) spectra of 1

Figure S5: HSQC spectrum of 1

Figure S6: Enlarged HSQC spectrum of 1

Figure S7: ¹H-¹H COSY spectrum of 1

Figure S8: HMBC spectrum of 1

Figure S9: Enlarged HMBC spectrum of 1

Figure S10: NOESY spectrum of 1

Figure S11: Scifinder search results of 1

Table S1: The comparison of NMR data of compounds $1 \mbox{ and } 2$

No	1		2	
	$\delta_{\rm H} \left(J {\rm in} {\rm Hz} \right)$	$\delta_{\rm C}$, type	$\delta_{ m H}$ (J in Hz)	$\delta_{\rm C}$, type
1		91.2, C		91.2, C
2		80.8, C		81.0, C
3	1.73, m; 1.16, td (12.8, 5.5)	33.0, CH ₂	2.03, dd (12.4, 5.8); 0.95, m	43.7, CH ₂
4	2.09, m; 1.46, m	$18.0, CH_2$	4.14, ddd (16.5, 10.8, 5.8)	62.1, CH
5	1.38, m	37.4, CH ₂	1.76, m (overlap); 1.14, m	47.8, CH ₂
6		78.5, C		78.5, C
7	2.12, t (8.9)	56.6, CH	1.97, t (9.0)	57.3, CH
8	1.82, m; 1.27, m	33.8, CH ₂	1.76, m (overlap); 1.20, m	33.8, CH ₂
9	2.64, tq (8.8, 4.9)	45.5, CH	2.56, m	45.4, CH
10	1.56, ddd (11.9, 4.9, 2.5); 1.38, m	43.3, CH ₂	1.52, ddd (12.0, 4.4, 2.4); 1.36 t (12.0)	43.2, CH ₂
11	0.99, s	22.0, CH_3	1.01, s (overlap)	21.9, CH ₃
12	1.00, s	24.0, CH ₃	1.01, s (overlap)	23.5, CH ₃
13		147.9, C		147.8, C
14	4.72, br s; 4.69, br s	109.1, CH ₂	4.67, br d (12.5)	109.1, CH ₂
15	1.72, s	21.9, CH ₃	1.68, s	21.7, CH ₃
1-OH	4.64, s			