Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

Trichothecene Sesquiterpenes with Anti-osteosarcoma Cytotoxicity from the Fungus *Fusarium* sp. XPW68

Huihuang Peng^{1,#}, Rui Chen^{2,#}, Yanxia Zhang³, Linsa Zhou^{4,*} and Jie Lin^{2,*}

¹Department of Hand and Foot Surgery, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian 325200, China

²Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Ruian 325200, China

³Industrial Technology Foundation Public Service Platform, Shandong Institute for Food and Drug Control, Jinan 250101, China

⁴Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China

Table of Contents	Page
Figure S1: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1	2
Figure S2: Enlarged ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1	2
Figure S3: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 1	3
Figure S4: HSQC spectrum of 1	3
Figure S5: Enlarged HSQC spectrum of 1	4
Figure S6: Enlarged HSQC spectrum of 1	4
Figure S7: HMBC spectrum of 1	5
Figure S8: Enlarged HMBC spectrum of 1	5
Figure S9: Enlarged HMBC spectrum of 1	6
Figure S10: ¹ H- ¹ H COSY spectrum of 1	6
Figure S11: Enlarged ¹ H- ¹ H COSY spectrum of 1	7
Figure S12: Enlarged ¹ H- ¹ H COSY spectrum of 1	7
Figure S13: NOESY spectrum of 1	8
Figure S14: Enlarged NOESY spectrum of 1	8
Figure S15: Enlarged NOESY spectrum of 1	9
Figure S16: HRESIMS spectrum of 1	10
Figure S17: Scifinder search result of 1	11
Table S1: NMR data of compounds 1, $3,6\alpha$ -dimethyl- 2β -(1β -methyl-2-methylenecyclopentyl)cyclohex-2-	12
enone, and 2α-hydroxytrichodiene-11-one	

^{*} Corresponding authors: E-mails: zhoulinsa@163.com (L. Zhou); rahosyaoxuelinjie@163.com (J. Lin)

[#] These authors contributed equally to the study.

Figure S2: Enlarged ¹H-NMR (500 MHz, CDCl₃) spectrum of 1

Figure S3: ¹³C-NMR (125 MHz, CDCl₃) spectrum of 1

Figure S4: HSQC spectrum of 1

© 2025 ACG Publications. All rights reserved.

Figure S6: Enlarged HSQC spectrum of 1

Figure S7: HMBC spectrum of 1

Figure S8: Enlarged HMBC spectrum of 1

Figure S9: Enlarged HMBC spectrum of 1

Figure S10: ¹H-¹H COSY spectrum of 1

Figure S12: Enlarged ¹H-¹H COSY spectrum of 1

Figure S13: NOESY spectrum of 1

Figure S14: Enlarged NOESY spectrum of 1

Figure S15: Enlarged NOESY spectrum of 1

Figure S16: HRESIMS spectrum of 1

CAS States	birpen + terras			0	an • Q ■	
Ballion Al France						
Substances search	for drawn structure					
B febrerati - 1 Asses	a. Winner					de River-
Vinature Match	Hiring Services	Selected = 30	Number of Component	10. F 10		One of These
Ar Dravel its	C Theodo				Det Mineres	C. You Children
sibiliuture (II	13.6	(in	54	10 ····	(2.8)	
Sindariy (Int)	1111124-85-6	5	66389-07-0	÷.,	244092-78-2	×.,
Cherriniage Artificial	Nr.	1	-D		-53	-
Insuity explore shortone pretarily with a powerful resu-	~~	<u></u>	\sim	7	· X	7
any met must Demoine.	E)gHggOg		Consta		CroMarthe	Autorial and and a local
Chale Charterage Analysis	1045-6-215345-8-Hydrosy- /Hydrojatiaenty/5-32	Lonepj2	pinethytyclosenty%)	etryi-5-8155-r.2.3- Lopotuhesen 1-	MLSH-L-Hylliney-2-Its (minitry/cyclasianty)-2-	epulsand.
Filter Behavior	desw-		10. · · · · · · · · · · · · · · · · · · ·		100-	
thirty being	R 1	N. 1	B. S. Law	North State	B1 21	ALC: NAME
- Search Within Results						
- Similarity	124		A CONTRACTOR		to all constants	27 ***
S 80-94 (1)	1362114-50-8	5 x -	1362114-49-5	×.,	1362114-42-3	· .
S #5-88(116)		1.		1	5	-
0 MARA (11)	XHC	×	XH	X	X	
The Party Lower	Y		F		2	17
then by	damps the surface start of	mark Reporting (1)	Annua basiliante	The Rampi	maneter	street, Spectrum
	C19H22O2	1.1	EurHpuDg	19.11.11.1	CopH2Da	and the second

Figure S17: Scifinder search result of 1

Position		0H 2 112 113 4 0H	$3,6\alpha-dimethyl-2\beta-(1\beta-methyl-2)-enone [11]$	$\frac{16}{9} + \frac{10}{7} + \frac{10}{5} + \frac{2}{13} + \frac{10}{15} + \frac{2}{14} + \frac{10}{7} + \frac{2}{15} + \frac{10}{14} + \frac{10}{15} + \frac{2}{14} + \frac{2}{15} + \frac{2}{15} + \frac{2}{14} + \frac{2}{15} + \frac{2}{1$
	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{\rm C}$	$\frac{\delta_{\rm H}}{\delta_{\rm H}}$
2	4.32, d (4.3)	74.7, CH	38.4, CH ₂	4.33, dd (8.3, 4.5)
3a	2.16, dd (13.5,	40.7, CH ₂	23.4, CH ₂	1.78, dd (13.8, 6.9)
3b 4a 4b	1.70, ddd (13.5, 10.9, 5.1) 4.67, dd (10.6, 6.8)	76.6, CH	39.0, CH ₂	1.71, dddd (13.8, 13.1, 6.9, 4.5) 2.60, ddd (13.1, 13.1, 6.9) 1.48, dd (13.1, 6.9)
5		52.2, C	48.5, C	
6		49.4, C	49.4, C	
7a	2.20, m	31.6, CH ₂	30.3, CH ₂	2.31, ddd (13.1, 11.7,
7b 8a	1.87, ddd (13.6, 5.2, 1.7) 2.43, m	28.9, CH ₂	28.4, CH ₂	1.97, ddd (13.1, 5.2, 2.1) 2.43, m
8b	2.24, m			2.23, ddd (18.6, 5.1, 2.1)
9		161.6, C	160.7, C	
10	5.76, s	126.9, CH	127.2, CH	5.73, s
11		207.1, C	204.2, C	
12		161.0, C	159.0, C	
13a	5.24, s	113.5,	106.2, CH ₂	5.22, s
13b	5.11, s			5.12, s
14	1.21, s	20.8, CH ₃	26.1, CH ₃	1.10, d (0.7)
15	1.29, s	18.2, CH ₃	17.4, CH ₃	1.22, s
16	1.93, s	23.9, CH ₃	23.8, CH ₃	1.92, s

Table S1:	NMR data of compounds 1, $3,6\alpha$ -dimethyl- 2β -(1β -methyl- 2 -methylenecyclopentyl)cyclohex-
	2-enone, and 2α-hydroxytrichodiene-11-one

[15] T. Tokai, H. Koshino, T. Kawasaki, T. Igawa, Y. Suzuki, M. Sato, M. Fujimura, T. Eizuka, H. Watanabe, T. Kitahara, K. Ohta, T. Shibata, T. Kudo, H. Inoue, I. Yamaguchi and M. Kimura (2005). Screening of putative oxygenase genes in the *Fusarium graminearum* genome sequence database for their role in trichothecene biosynthesis, *FEMS Microbiol. Lett.* 251, 193-201.