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Materials and Methods

General Experiment Procedures

The NMR spectra were measured at 300 MHz for *H and 75.4 MHz for $3C on a Bruker Avance
300 or at 700 MHz for *H and 175 MHz for 3C on a Bruker Avance 11l HD 700 MHz spectrometer
using chloroform and dimethyl sulfoxide deuterated. HRMS was performed on an Orbitrap Exploris
120 mass spectrometer (Thermo Scientific) by direct infusion. A sample was taken and resuspended in
0.1% formic acid solution in a 1:2 isopropanol: methanol ratio. The acquisition was performed under
the following parameters: on Source Type = H-ESI; Spray Voltage: Positive lon (V) = 3300; Sheath
Gas (Arb) = 12; Aux Gas (Arb) = 1; Sweep Gas (Arb) = 0; ion transfer tube temperature (°C) = 320;
vaporizer temperature (°C) = 250; Scan Range (m/z) = 200-1000; FT Resolution = 120000. FTIR
spectra were recorded on a Nicolet 6700 FTIR spectrometer. EIMS spectra were recorded at 70 eV on
a Thermo Scientific GC TRACE 1310 EM ISQLT spectrometer. Column chromatography was
performed on silica gel (230-400 mesh). TLC analysis was performed on a precoated gel 60 with
fluorescent indicator UV254 (Alugram Xtra Sil), and a sulfuric acid solution (30%) was sprayed with
it, followed by heating until colored spots appeared.

Extraction Procedure

The dried and ground leaves/stems of L. callicarpifolia (533 g) were extracted by maceration
method with 3 L of n-hexane, ethyl acetate (EtOAc), and methanol (MeOH), 3 times, in escalating
polarity. Following the filtration process, the extracts were concentrated, resulting in the isolation of n-
hexane (16.1 g), EtOAc (13.3 g), and MeOH (46.2 g) extracts.

The EtOAc extract from the leaves/stems exhibited antifungal activity against Fusarium
sporotrichioides. The active extract (12.5 g) was chromatographed over silica gel with mixtures of n-
hexane-EtOAc (1:1) in escalating polarity as eluted to afford 50 fractions. The resulting fractions,
which contained a significant yield were evaluated for their antifungal efficacy against F.
sporotrichioides growth. Fraction 4 (n-hexane-EtOAc, 2:3) and fraction 6 (n-hexane-EtOAc, 3:7)
contained active compounds. Fractions 4 and 5, which exhibited chromatographic similarities (2.3 g),
were further fractionated through column chromatography with silica gel and eluted with an n-hexane-
EtOAc mixture in a 7:3 ratio afforded 15.4 mg of compound 1. In fraction 6 of the crude extract, a
white solid was observed after washing with n-hexane-EtOAc (7:3). This procedure afforded 10.6 mg
of compound 2, whereas fraction 39 n-hexane-EtOAc (3-4) yielded sugar 3 (8.6 mg).

Ground flowers of L. callicarpifolia (241 g) were extracted with 4 L of n-hexane, EtOAc, and
MeOH, as described above. The resulting extracts were concentrated to yield n-hexane (8.6 g), EtOAc
(6.9 g), and MeOH (37.4 g) extracts. The EtOAc extract of flowers also exhibited antifungal activity
against F. sporotrichioides. The extract (6.4 g) was fractionated by column chromatography over silica
gel and eluted with an n-hexane-EtOAc (7:3) solution with increasing polarity to yield 50 fractions.
The fraction 9 (F-9), eluted with n-hexane-EtOAc (3:2), and fraction 17 (F-17), eluted with n-hexane-
EtOAc (1:1), in which the antifungal activity was concentrated, were purified by washing with n-
hexane-EtOAc (9:1) and CH,Cl,, respectively. F-9 yielded 5.1 mg of compound 1, whereas the F-17
yielded flavone 4 (8.1 mg).

Antifungal Activity

Three yeasts of clinical importance were evaluated: Candida albicans 17MR donated by CUSI,
FES-lztacala, UNAM, and C. glabrata and C. tropicalis were donated by Hospital Angeles
Metropolitano, Mexico. Aspergillus niger, Fusarium moniliforme, Trichophyton mentagrophytes, and
Fusarium sporotrichioides NRLL were donated to the Laboratory of Plant Physiology, UBIPRO, FES-
Iztacala. The stock cultures were maintained on potato dextrose agar (PDA, Bioxon, Mexico).

The antifungal efficacy of the yeast was assessed using the disk diffusion technique [1]. The
inoculum was prepared in sterile Sabouraud Dextrose broth (BD Bioxon, Mexico) and incubated
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overnight at 37 °C. The inocula (1.5 x 108 CFU/mL) were distributed across the surface of the PDA
agar. Subsequently, paper disks saturated with 2 mg/disk of each extract were placed and incubated at
37 °C for 24 h. Nystatin (20.6 pg/disk, Bio-Rad, France) as the positive control.

The antifungal activity of the extracts, fractions, and isolated compounds against molds was
evaluated according to the radial growth inhibition method described by Serrano et al. [2], with some
modifications. The Petri dishes were filled with 25 mL of PDA. A fungal disc (5 mm diameter)
containing conidia from each examined strain was placed at the center of each dish. Paper disks
containing 2 mg/disk of each extract. The Petri dishes were incubated for 14 days until mycelial
growth developed at room temperature. Ketoconazole (60 pg/mL) was used as a positive control, and
solvent-negative controls were also used.

For the determination of quantitative concentration, six varying concentrations of extracts (4, 2, 1,
0.5, 0.250, and 0.125 mg/mL), fractions (4, 2, 1, mg/mL), and compounds 1 and 4 (1, 0.5 and 0.25
mg/mL) were subjected to assays [2].

In the quantitative assays of the extracts, fractions, or pure compounds, the specified doses were
dissolved in dimethyl sulfoxide (0.5%) and acetone (1%) and rapidly mixed with PDA agar (3 mL),
and poured into a 24-well (1 mL) in triplicate. Once the agar had cooled, the conidia were inoculated
at 1x10* conidia/5 pL. The Petri dishes were maintained at room temperature for an extended time of
72 hours to facilitate mycelium development. The positive control for the experiment was
ketoconazole at of 60 pg/mL, with the solvent for extract dilutions functioning as the negative control.
Once the incubation period was completed, measurement of fungal growth inhibition was measured
using the following formula:

I (%) = (dc - dt) / dc x 100

Here, 1 (%) stands for the percentage of inhibition, with dc representing the diameter of the
control culture colony and dt denoting the diameter of the treated culture colony.

Statistical Analysis

All analyses were performed in triplicate, and the assay results are reported as mean + standard
deviation using the Microsoft Excel program.

Docking Analysis

The ligand was initially optimized using Gaussian16 software [3] and the Density Functional
Theory (DFT) with the B3LYP method [4]. Subsequently, the three-dimensional structure of the 1JFA
protein, trichodiene synthase from F. sporotrichioides, was obtained from the Protein Data Bank
(PDB), [5]. This enzyme catalyzes the cyclization of farnesyl diphosphate to produce trichodiene, a
key intermediate in the biosynthesis of trichothecene mycotoxins. Homology was performed using the
YASARA software [6].

The CavityPlus [7-8] software, which is tailored for robust protein cavity detection and functional
analysis, was subsequently used. This tool detects potential binding sites on the protein surface and
ranks them according to druggability score. Residues from the binding site labeled with a "strong"
druggability description were then isolated, and the box was defined in the Vina program [9-10] to
adjust both the ligand center and box size. Virtual screening was then performed using Vina
exclusively for ligands with negative binding affinity [11-12]. The figures were generated using the
PyMOL Molecular Graphics System version 2.0. Schrodinger.
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Table S1: NMR data for D:C-friedours-7-en-28-oic-acid compounds 1 in CDClz and 2 in
DMSO-de compared with the analogous structure.

D:C-3-oxo- ) .
1 friedours-7-en- D.C-frledoulrg-%en-s- 2

No 28-oic acid [11] one [13]

o, ”‘lﬂ'zt Jin & HMBC &, mult, Jin Hz 5 s m'j'zt Jin S, mult, Jin Hz & HMBC?

1.98, m; 1.46, . 1.84,dd, 10.4, 2.3;
1 " 38.2 25 ; 3831  1.98; 143 L10.m 425 25

2.76, ddd, _
2 146,146, 349 - 2761, ddd, J= 5489 575.225 387, m 701 1
: 14.8,14.8,5.4

5.7:2.26,m
3 ) 2169 23,24 ; 216.64 . 2.99,d,2.1 773 1,23,24
4 - 478 523,24 - 47.77 . . 37.8 523,24,
5 172,189 521 23,24,25 ; 52.17 172 132, m 500  23,24,25

233, m; 2.12, _ .
6 " 245 5 - 2457  2.13;2.10 2.08, m; 1.98, m 23.8 5
7 547, m 116.9 ; 5.463, m 116.43 551 541, m 116.8 6
8 ; 144.7 26 - 14546 - - 1440 6,11, 26
9 2.33,m 47.9 25 - 47.86 2.30 217, m 482 5,25
10 - 35.3 25 - 35.28 - - 342 1,525
11 1.64,m 165 ) ; 17.00 155 153, m 15.9 12
12 164, m 325 27 - 32.40 152 1.55,m: 1.26, m 32.0 27
13 - 371 18,26,27 ; 37.77 - - 36.6  18,26,27
14 ; 411 26,27 ; 41.40 . . 406 16, 26,27
15 158, m 28.3 26 ; 28.96  155;146 1.28,m 289 16,26
16 19 ”rl; 148 55 ; ; 3768  151:119 174 g_r?‘, 4015L 39 18
17 ; 447 18,27 ; 32.03 . . 438 16,18
18 237, brs 475 27 ; 54.99 1.30 2.31, brs 476 27,29
19 1.15,m 367 29,30 - 35.39 116 107, m 36.2 18,29, 30
20 112,m 323 30 ; 32.03 156 107, m 316 29,30
21 113, m 28.9 30 ; 29.22 1.29 152, m: 1.46, m 27.8 30
2 220 m 188, 260 - - 3156 157;1.18 2.19, m; 1.60, m 256 16
23 1.05,s 24.4 24 1.064 24,50 1.04 0.86,s 29.2 5, 24
24 111,s 215 23 1110 21.45 111 098, s 16.7 5,23
25 101,s 126 - 1.030 12.66 1.01 092, s 14.1 1,5
26 111,s 23.6 ; 1102 23.79 1.03 101,s 23.3 18
27 1.04,s 21.9 ; 1.040 2.72 0.95 098, s 214 18
28 ; 186.3 ; ; 37.99 1.04 - 1816 16,1822
29 106,d,69 234 ; 1.007, brs 25.65 1.05 1.00, d, 6.0 23.2 18
30  087,d,36 213 ; 0.86,d,J=49 2252 0.90 082,d,27 21.2 21

Measured at 300 MHz for *H and 75.4 MHz for **C. *HMBC correlations of compound 2 were observed at 300 and 700 MHz.
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Table S2: Bonding interactions of genkwanin with 1JFA protein trichodiene synthase residues.

Hydrogen bond Hydrophobic interactions

LYS-198 PHE-142

PHE-114 PRO-144
MET-110
LEU-148
VAL-111
ARG-140
ASN-112
TYR-113
ILE-151
PRO-136
PHE-114
ASP-115
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Figure S10: Fragmentation spectrum of the callicarpifolic acid (2) ion observed in the full scan.
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Figure S1la: Extended *H NMR spectrum of callicarpifolic acid (2) in DMSO-dg (300 MHz).
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Figure S12b: Extended COSY spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S15a: Extended HSQC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S15b: Extended HSQC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S15c: Extended HSQC spectrum of callicarpifolic acid (2) in DMSO-ds.

© 2025 ACG Publications. All rights reserved.



%

r20

"

[7
"0,
0

%
)

40

i ogfo”&

50
60
r70
80
90

ppm

100
r110
r120
r130
r140
150
160
r170
180

6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
ppm

Figure S16: HMBC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S16a: Extended HMBC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S16b: Extended HMBC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S17: *H NMR spectrum of callicarpifolic acid (2) in DMSO-ds (700 MHz).

© 2025 ACG Publications. All rights reserved.

24



gaaoe o @exx  ~RKNKRR ©une nnbhs TETTTS

2.30
—2.19
—2.17

H-11b, H-12a, H-21
|

.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40
ppm

Figure S17a: *H NMR spectrum of callicarpifolic acid (2) in DMSO-ds (700 MHz).
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Figure S17b: *H NMR spectrum of callicarpifolic acid (2) in DMSO-ds (700 MHz).
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Figure S18a: Extended COSY spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S18b: Extended COSY spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S21: HSQC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S21b: Extended HSQC spectrum of callicarpifolic acid (2) in DMSO-ds.
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© 2025 ACG Publications. All rights reserved.

ppm



H18 | 523 Ho6a

r110

120

r130

140

C-8

ppm

150

160

170

180

C-28 —

T T T T T T T T T T T T T T T T T T T T T
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 0.7 0.6

Figure S22a: Extended HMBC spectrum of callicarpifolic acid (2) in DMSO-ds.

H3t24
H3-23

r69

70
c2 =,

r71

r72

r73

r74

ppm

r75

r76

r77

C-3 =

r78

r79

8o

5.4 5.0 4.6 4.2 3.8 3.4 3.0 2.6 22 1.8 1.4 1.0 0.6
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Figure S22c: Extended HMBC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S22d: Extended HMBC spectrum of callicarpifolic acid (2) in DMSO-ds.
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Figure S23: *H NMR spectrum of g-sitosterol glucoside (3) in DMSO-ds (300 MHz).
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Figure S26: 3C NMR spectrum of genkwanin (4) in DMSO-ds (75.4 MHz).
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