Supporting Information ## Org. Commun. X:X (2025) XX-XX ## Ionic-liquid mediated one-pot synthesis of novel thiazolidinones containing pyrazole and thiazole hybrid as COX-1/COX-2 inhibitor ## Vivek T. Humne 1*, Deekshaputra R. Birhade 2 and Omprakash B. Pawar³ ¹Department of Chemistry, Shri R. R. Lahoti Science College, Morshi, Amravati (India)-444905 ² Department of Chemistry, Shri Vyankatesh Arts, Commerce and Science College, Deulgaon Raja (India) – 443204 ³Department of Chemistry, Rajaram College, Kolhapur (India) - 416004 | Table of Contents | Page | |--|------| | Figure S1: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of 3a | 2 | | Figure S2 ¹³ C-NMR (126 MHz, DMSO- <i>d</i> ₆) Spectrum of 3a | 2 | | Figure S3: IR Spectrum of 3d | 3 | | Figure S4: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of 3d | 3 | | Figure S5: ¹³ C-NMR (126 MHz, DMSO- <i>d</i> ₆) Spectrum of 3d | 4 | | Figure S6: HRMS of 3d | 4 | | Figure S7: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of 3e | 5 | | Figure S8: ¹³ C-NMR (126 MHz, DMSO- <i>d</i> ₆) Spectrum of 3e | 5 | | Figure S9: HRMS of 3e | 6 | | Figure S10: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of 3f | 6 | | Figure S11: ¹³ C-NMR (126 MHz, DMSO- <i>d</i> ₆) Spectrum of 3f | 7 | | Figure S12: HRMS of 3f | 7 | | Figure S13: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of 3h | 8 | | Figure S14: ${}^{13}\text{C-NMR}$ (126 MHz, DMSO- d_6) Spectrum of 3h | 8 | | Figure S15: ¹ H-NMR (500 MHz, DMSO-d ₆) Spectrum of 3i | 9 | | Figure S16: 13 C-NMR (126 MHz, DMSO- d_6) Spectrum of 3i | 9 | | Figure S17: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of 3j | 10 | | Figure S18: 13 C-NMR (126 MHz, DMSO- d_6) Spectrum of 3j | 10 | | Figure S19: ¹ H-NMR (500 MHz, DMSO-d ₆) Spectrum of 3k | 11 | | Figure S20: 13 C-NMR (126 MHz, DMSO- d_6) Spectrum of 3k | 11 | | Figure S21: ¹ H-NMR (500 MHz, DMSO-d ₆) Spectrum of 3l | 12 | | Figure S22: ¹³ C-NMR (126 MHz, DMSO-d ₆) Spectrum of 3l | 12 | ^{*} Corresponding author: E-mail: vivekhumne2013@gmail.com Figure S1: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of 3a Figure S2: ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of 3a Figure S3: IR Spectrum of 3d Figure S4: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of 3d Figure S5: ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of **3d** Figure S6: HRMS of 3d Figure S7: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of 3e Figure S8: ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of 3e Figure S9: HRMS of 3e Figure S10: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of 3f Figure S11: ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of 3f Figure S12: HRMS of 3f **Figure S13:** ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of **3h** Figure S14: ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of 3h Figure S15: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of 3i **Figure S16:** ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of **3i** Figure S17: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of 3j **Figure S18:** ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of **3j** **Figure S19:** ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of **3k** Figure S20: ${}^{13}\text{C-NMR}$ (126 MHz, DMSO- d_6) Spectrum of 3k **Figure S21:** ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of **3l** **Figure S22:** ¹³C-NMR (126 MHz, DMSO-*d*₆) Spectrum of **3l**